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CHAPTER 1 

Introduction 

 

INTRODUCTION 

The word 'Hydraulics' has been derived from a Greek word 'Hudour' which means 

water. Hydraulics is that branch of engineering which deals with water at rest or in 

motion. It deals mainly with the practical problems of flow of water and is based 

upon the results obtained from experiments. It provides various principles to solve 

practical problems in water supply, irrigation engineering, water power and 

hydraulic machines. 

 

Pneumatics is that branch of engineering which deals with the action of 

compressed air or any other gas in operating various machines and equipment’s. 

 

FLUID Fluid may be defined as a substance which is capable of flowing and offers 

practically no resistance to the change of shape. 

 

A fluid has no definite shape of its own, but takes the shape of the containing 

vessel. A fluid has no tensile strength or very little of it and it can resist 

compressive forces when it is kept in a container, When subjected to shearing force, 

a fluid deforms continuously as long—as force is applied. For mechanical analysis, 

a fluid is considered to be continuum i.e. a continuous distribution of matter with no 

void or empty space. Some of the examples of fluids are water, oil, air, gases and 

vapours. 

Fluids may be classified as follow: 

1. Liquids, 

2. Gases including vapours. 

1. Liquids: Liquids occupy a definite volume and are not affected appreciably by 

change in temperature or compression. Water, oil, honey, glycerine, paint, blood 

etc. are the examples of liquids. 

2. Gases including vapours: Gases and vapours do not occupy a definite volume, 

but take the shape and volume of vessels containing them. Gases and vapours 

readily respond to change • temperature. These are capable of being compressed to 

a considerably small volume under high pressure. 

 

TYPES OF FLUIDS 

The fluids may be classified into the following two categories 

1. Ideal fluids, 

2. Real fluids. 

 

1. Ideal Fluids: the fluids which are incompressible and have no viscosity and 

surface tension. These are only imaginary fluids and do not exist. 

However, air and water may be considered as ideal fluids without much error. 

 

2. Real Fluids: The fluids which possess properties such as viscosity, surface 

tension and compressibility are called real fluids. The fluids actually available in 

nature are real fluids. These fluids offer a certain amount of resistance when these 

are set in motion. 

 

These are further subdivided into the following categories 
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(i) Newtonian fluids, 

(ii) Non-Newtonian fluids, 

(iii) Ideal plastic fluids, 

(iv) Thixotropic fluids. 

 

(i) Newtonian Fluids: The fluids in which shear stress is directly 

proportional to the rate of shear strain (or velocity gradient) are called 

Newtonian fluids. These fluids follow Newton's law of viscosity. 

(ii) Non-Newtonian Fluids: The fluids in which shear stress is not 

proportional to the rate of shear strain (or velocity gradient) are called 

non-Newtonian fluids. 

(iii) Ideal Plastic Fluids: The fluids in which shear stress is more than yield 

stress value r and shear stress is directly proportional to the rate of shear 

strain (velocity gradient) are called ideal plastic fluids. 

(iv) Thixotropic Fluids: The fluids in which shear stress is more than Yield 

stress value and shear stress is not proportional to the rate of shear strain 

(or velocity gradient) called thixotropic fluids. e.g. printer's ink. 

 

 

 

 
 

PROPERTIES OF FLUIDS 

Some of the important properties of fluids are as follow 

(i) Mass density, 

(ii) Specific weight 

(iii) Specific volume 

(iv) Specific gravity 

(v) Viscosity 

(vi) Vapour pressure 

(vii) Cohesion 

(viii) Adhesion 

(ix) Surface tension 

(x) Capillarity 
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(xi) Compressibility 

 

 

Mass Density 

Mass density of fluid may be defined as mass of fluid per unit volume. It is 

generally by p (Rho). Its S.I. unit is kg/m3. 

 
The mass density of water is taken as 1000 kg/m3 at 4°C. 

 

Specific Weight 

Specific weight of fluid may be defined as weight of fluid per unit volume It is 

denoted by w. Its SI unit is N/m3. Specific weight varies from place to place due 

to the change of acceleration due to gravity (g). 

 

Mathematically, 

 

Specific weight depends upon mass density and gravitational acceleration. Since gravitational 

acceleration varies from place to place, therefore, specific weight also varies from place to place. 

Specific weight also decreases with the increase in temperature. It increases with increase in pressure. 

However, the specific weight of water is taken as 9810 N/m3 at 4°C. 

Specific Volume  

Specific volume may be defined as the volume occupied by fluid per unit mass.it is generally denoted 

by v. its SI unit is m ^3/kg. 

Specific volume is reciprocal of mass density. 

Specific gravity, 

Specific gravity is the ratio of the density (mass of a unit volume) of a substance to the 

density of a given reference material. Specific gravity for liquids is nearly always 

measured with respect to water at its densest (at 4 °C or 39.2 °F); for gases, air at room 

temperature (20 °C or 68 °F) is the reference. The term "relative density" is often 

preferred in scientific usage. It is defined as a ratio of density of particular substance 

with that of water. 

 

Viscosity 

Viscosity is a measure of a fluid's resistance to flow. It describes the internal friction 

of a moving fluid. A fluid with large viscosity resists motion because its molecular 

makeup gives it a lot of internal friction. 

https://en.wikipedia.org/wiki/Ratio
https://en.wikipedia.org/wiki/Density
https://en.wikipedia.org/wiki/Water_(molecule)
https://en.wikipedia.org/wiki/Room_temperature
https://en.wikipedia.org/wiki/Room_temperature
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A fluid with low viscosity flows easily because its molecular makeup results in very 

little friction when it is in motion. 

Gases also have viscosity, although it is a little harder to notice it in ordinary 

circumstances. 

 

Kinematic viscosity 

The ratio of viscosity to mass density of Fluid is called kinematic viscosity. 

SI unit m^2/s. Another unit of KV is Stroke. 

1 m^2/s=10000 strokes 

 

Compressibility 

Compressibility of a fluid may be defined the property by virtue of which the fluid 

undergoes a change in volume under the action of external pressure. All the fluids 

can be compressed by the application of external pressure and when the pressure is 

removed, the compressed volumes of fluids expand to their on volumes, Thus fluids 

also possess elastic characteristics just like elastic solids. 

The variation in the volume of water with the variation of pressure is so small that 

for practical purposes, it is neglected. Thus water is considered as incompressible 

fluid, Compressibility of fluid may be expressed as the reciprocal of bulk modulus 

of elasticity (K). 

Bulk modulus of elasticity (K) may be defined as the ratio of compressive stress to 

volumetric strain. 

 

Cohesion 

Cohesion is the property of liquid by virtue of which it can withstand tension, 

property of liquid is due to the intermolecular attraction between the molecules of 

the liquid. The property of surface tension is also due to cohesion. The droplet of 

water hanging down the tap keeps its entity together due to the property of cohesion 

 

Adhesion 

Adhesion is the property of liquid by virtue of which it adheres (stick.) to the solid 

body with which it is in contact. Whereas cohesion is due to its inter-molecular 

attraction between the molecules of the liquid, adhesion is due to the forces of 

attraction between the molecules of the liquid and the molecules of the solid body, 

A droplet of water before falling from the tip of the finger exhibits the property of 

adhesion, 

 

Surface Tension 

The property of liquid by virtue of which the free surface of the liquid acts as a 
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stretched elastic membrane capable of bearing a slight amount of tension is called 

surface tension. 

 
 

Mathematically, the surface tension may be defined as the force required unit length 

of Film in equilibrium. Its S.I unit is N/m 

The property of surface tension can be described by slowly placing a steel needle on 

the surface of water in the horizontal position. The needle will continue floating on 

the surface of water exhibiting a little depression on the surface: The property of 

surface tension is due to the cohesion between the particles of the liquid. 

 

 

Capillarity 

Capillarity is the phenomenon by which a liquid rises up or falls down in a thin glass 

tube in comparison to the general liquid level in the vessel, when the glass tube is 

dipped into the mass of liquid. The rise of liquid is known as capillary rise whereas the 

fail of liquid Is known as capillary depression. It is generally expressed in terms of mm 

or cm of liquid. The phenomenon of capillarity is due to the effect of cohesion and 

adhesion of liquid particles, (If the cohesion between the liquid particles is less than the 

liquid in the tube will rise to the general more than adhesion, then the liquid in the tube 

will go down the liquid. the adhesion with the glass tube, then level of the liquid, If the 

cohesion;  
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Hydrostatics 

• Pressure distribution in a static fluid and its effects on solid surfaces and on floating and submerged bodies. 

 

 



Fluid at rest 

Fluid Statics M. Bahrami ENSC 283 Spring 2009 2 

 

 

 
 

 

• hydrostatic condition: when a fluid velocity is zero, the pressure variation is due only to the weight of the fluid. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

• There is no pressure change in the horizontal direction. 

•  There is a pressure change in the vertical direction proportional to the density, gravity, and depth change. 

 

• In the limit when the wedge shrinks to a point,  



 

 

• 

• 

The pressure gradient is a surface force that acts on the sides of the element. 
Note that the pressure gradient (not pressure) causes a net force that must be 
balanced by gravity or acceleration. 

Fluid Statics M. Bahrami ENSC 283 Spring 2009 3 

 

Pressure forces (pressure gradient) 

 

• Assume the pressure vary arbitrarily in a fluid, p=p(x,y,z,t). 

 

 



 

 

 



Equilibrium 

Fluid Statics M. Bahrami ENSC 283 Spring 2009 4 

 

 

 

• The pressure gradient must be balanced by gravity force, or weight of the element, for a fluid at rest. 

 

 

 

 

 

 

 

• The gravity force is a body force, acting on the entire mass of the element. Magnetic force is another example of body force. 



Gage pressure and vacuum 

Fluid Statics M. Bahrami ENSC 283 Spring 2009 5 

 

 

P 

Pgage 

Pvac 
Pabs 

Patm 
Absolute 

(vacuum) = 0 

 

• The actual pressure at a given position is called the absolute pressure, and it is measured relative to absolute vacuum. 

 

 

 



Hydrostatic pressure distribution 

Fluid Statics M. Bahrami ENSC 283 Spring 2009 6 

 

 

where g = 9.807 m/s2. The pressure gradient vector becomes: 

 

• For a fluid at rest, pressure gradient must be balanced by the gravity force 

 

 

 

• Recall: Ap is perpendicular everywhere to surface of constant pressure p. 

• In our customary coordinate z is “upward” and the gravity vector is: 

 

 

 

 



Hydrostatic pressure distribution 

Fluid Statics M. Bahrami ENSC 283 Spring 2009 7 

 

 

 



Hydrostatic pressure distribution 

Fluid Statics M. Bahrami ENSC 283 Spring 2009 8 

 

 

 

• Pressure in a continuously distributed uniform static fluid varies only with vertical distance and is independent of the shape of the container. 

• The pressure is the same at all points on a given horizontal plane in a fluid. 

 

 

 

 

 

 

 

• For liquids, which are incompressible, we have: 

 

• The quantity, p⁄γ is a length called the pressure head of the fluid. 



The mercury barometer 

Fluid Statics M. Bahrami ENSC 283 Spring 2009 8 

 

 

Patm = 761 mmHg 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

• Mercury has an extremely small vapor pressure at room temperature (almost vacuum), thus p1 = 0. One can write: 



Hydrostatic pressure in gases 
 

 

• Note that the Patm is nearly zero (vacuum condition) at z = 30 km. 

Fluid Statics M. Bahrami ENSC 283 Spring 2009 9 

 
 

 

• Gases are compressible, using the ideal gas equation of state, p=ρRT: 

 

• For small variations in elevation, “isothermal atmosphere” can be assumed: 

 

 

 

 

• In general (for higher altitudes) the atmospheric temperature drops off linearly with z 

T≈T0 ‐ Bz 

where T0 is the sea‐level temperature (in Kelvin) and B=0.00650 K/m. 

 

 

 

 

 



Manometry 

Fluid Statics M. Bahrami ENSC 283 Spring 2009 10 

 

 

 
 

 

• A static column of one or multiple fluids can be used to measure pressure difference between 2 points. Such a device is called manometer. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

• Adding/ subtracting γ∆z as moving down/up in a fluid column. 

 

• Jumping across U‐tubes: any two points at the same elevation in a continuous mass of the same static fluid will be at the same 

pressure. 



Hydrostatic forces on surfaces 

Fluid Statics M. Bahrami ENSC 283 Spring 2009 11 

 

 

 
 

• Consider a plane panel of arbitrary shape completely submerged in a liquid. 

 

 

• The total hydrostatic force on one side of the plane is given by: 



Hydrostatic forces on surfaces 

Fluid Statics M. Bahrami ENSC 283 Spring 2009 12 

 

 

 
 

• After integration and simplifications, we find: 

 

• The force on one side of any plane submerged surface in a uniform fluid equals the pressure at the plate centroid times the plate 

area, independent of the shape of the plate or angle θ. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

• The resultant force acts not through the centroid but below it toward the 
high pressure side. Its line of action passes through the centre of pressure 

CP of the plate (xCP, yCP). 



Hydrostatic forces on surfaces 
 

 

 
 

• Centroidal moments of inertia for various cross‐sections. 

 • Note: for symmetrical plates, Ixy = 0 and thus xCP = 0. As a result, the center 
of pressure lies directly below the centroid on the y axis. 

Fluid Statics M. Bahrami ENSC 283 Spring 2009 13 



 

 

 

Hydrostatic forces: curved surfaces 

 

• The easiest way to calculate the pressure forces on a curved surface is to compute the horizontal and vertical forces separately. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

• The horizontal force equals the force on the plane area formed by the projection of the curved surface onto a vertical plane normal to the 

component. 

• The vertical component equals to the weight of the entire column of fluid, both liquid and atmospheric above the curved surface. 

FV = W2 + W1 + Wair 
 

 
Fluid Statics M. Bahrami ENSC 283 Spring 2009 14 
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 Fluid Kinematics 

 
a) Description of motion of individual fluid molecules (X) 

# of molecules per mm3 ~ 1018 for gases or ~ 1021 for liquids 

b) Description of motion of small volume of fluid (fluid particle) (O) 

 
 

◉ Two effective ways of describing fluid motion 

 

E.g. Smoke discharging from a chimney 

 

Q. Determine the temperature (T) of smoke 

 

Method 1. 

Step 1. Attach a thermometer at point 0 

Step 2. Record T at point 0 as a function of t 

T = T (x0, y0, z0, t) 

Step 3. Repeat the measurements at numerous points 

T = T (x, y, z, t) 

: Temperature information as a function of location 

Eulerian method (Practical) 

 

Method 2. 

Step 1. Attach a thermometer to a specific particle A 

Step 2. Record T of the particle as a function of time 

T = TA (t) 

Step 3. Repeat the measurements for numerous particles 

T = T (t) 

: Temperature information of an individual particle 

Lagrangian method (Unrealistic) 
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● Visualization of a flow feature 

 

1. Streamline (Analytical purpose): Tangential to Velocity field 

 

Steady flow: Fixed lines in space and time (No shape change) 

Unsteady flow: Shape changes with time 

 

e.g. For 2-D flows, Slope of the streamlines, 
 

dy 
= 

v 

dx u 

 
Continuous 

Video capture 
 

 

2. Streakline (Experimental purpose): Connecting line of all particles in 

a flow previously passing through a common point 

 

Steady flow: Streakline 

= Streamline 

Unsteady flow: Different 

at different time 

 

 
 

3. Pathline (Experimental purpose; Lagrangian concept) 

: Traced out by a specific particle from a point to another 

Steady flow: Pathline = Streamline 

Unsteady flow: None of these lines 

need to be the same 
 

 
 

Time exposure 

photograph 

 

 

 

 
Instantaneous 

snapshot 
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A 

V = u(x, y, z, t)i  ̂+ v(x, y, z, t) ĵ + w(x, y, z, t)k  ̂

◉ Eulerian analysis vs. Lagrangian analysis I (Fluid Velocity) 

 

● Eulerian representation (Field representation) 

Step 1. Select a specific point (location) in space 

Step 2. Measure the fluid properties ( , p, v , and a ) at the point as 

functions of time 

Step 3. Repeat Step 1 & 2 for numerous points (locations): Mapping 
 

 Results: Fluid properties ( , p, v , and a ) 

- Function of LOCATION and TIME (Field representation) 

 

e.g. Temperature in a room determined by Eulerian method 

T = T (x, y, z, t) : Temperature field 

 
 

● Velocity Field of Fluid flow 

- Velocity information as a function of location and time 
 

where u, v, w : x, y, z components of V at (x,y,z) and time t 

(Velocity distribution in space at certain time t) 
 

How to determine Velocity of a specific particle A at time t, 

- Must know Location of particle A = (xA, yA, z A ) at time t 

r 
= u(x A, y A, z A, t)iˆ 

+ v(xA, yA, z A, t) ̂ j 

+ w(xA, yA, z A,t)kˆ 

V 
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V = u(x, y, z)î  + v(x, y, z) ĵ + w(x, y, z)k  ̂

◉ Additional conditions 

 

● Steady and Unsteady Flows 

 

a) Steady flow (Time-independent flowing feature) 
 

: Velocity field doesn’t vary with time. 

 

b) Unsteady flow (Time-dependent flowing feature) 
 

V = u(x, y, z, t)iˆ + v(x, y, z, t) ĵ + w(x, y, z, t)k  ̂
 

Type 1. Nonperiodic, unsteady flow: 

e.g. Turn off the faucet to stop the water flow. 

 

Type 2. Periodic, unsteady flow 

e.g. Periodic injection of air-gasoline mixture into the 

cylinder of an automobile engine. 

 

Type 3. : Pure random, unsteady flow: Turbulent flow 

 

 

c.f. Lagrangian description of the fluid velocity 

 
for individual particles A v

r
A  = uA (t)î  + vA (t) ̂j + wA (t)k̂ 
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a
r
(t) = 

V  
+ u 

V  
+ v 

V  
+ w 

V
 

t x y z 

A A A A 

◉ Eulerian analysis vs. Lagrangian analysis II (Fluid Acceleration) 

 

Eularian method: Acceleration field (function of location and time) 
 

Langrangian method: aA = aA (t) for individual particles A 
 

 

Consider a fluid particle A moving along its pathline 

z 
From Velocity field, 

V
r 
= V

r
(x, y, z, t ) 

Particle A at  r  
  Time t  

VA
 

Velocity V
r
 

 

for particle A, 

 
Particle 

Path 

 
rA 

 
zA(t) 

vA(rA ,t) 
wA(rA,t) 

uA(rA,t) 

y 
VA= VA [xA(t), y A(t), z A(t), t] 

 
x 

 
yA(t)  

  xA(t) 

Acceleration a A of particle A 
 

a
r

A (t) = 
dVA

 

dt 
= 

VA 

x 

dxA 

dt 
+ 

VA 

y 
dyA 

dt 
+ 

VA 

z 
dz A 

dt 
+ 

VA 

t 

 

From the velocity field → uA = 
dxA , 

dt 
vA = 

dyA , 
dt 

wA  = 
dz A 

dt 
 

a
r 

(t) = 
dVA 

dt 
= u 

VA 

x 
+ v 

VA 

y 
+ w 

VA 

z 
+ 

VA 

t 

 

 

By applying this equation to all particles in a flow at the same time, 
 

 
 

 (Vector equation) 

A 
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t x 

= 
( ) 

+ (V
r 
)( ) 

t 

x-component ax(t) = u 
+ u 

u 
+ v 

u 
+ w 

u 
  

t x y z 

y-component ay(t) = v 
+ u 

v 
 

+ v 
v

 
 

+ w 
v

 
 

t x y z 

z-component az(t) = w
+ u 

w 
+ v 

w 
+ w 

w 
    

t x y z 
 

● Simple representation of the equation (Material Derivative) 
 

a
r
(t) = 

V
 

t 
+ u 

V 

x 
+ v 

V 

y 
+ w 

V 

z 
 

DV 

Dt 
 

 
where = 

( ) 
+ u 

( ) 
+ v

 ( ) 
+ w

 

y 

( ) 
or

 

z 
 

 

 

 

: Material derivative or Substantial derivative 
 

Material derivative: Time rate of change of fluid properties 

- Related with both Time-dependent change and 

Fluid’s motion (Velocity field (or u, v, w): Must be known] 
 

 
 

e.g. Time rate of change of temperature 
 

dTA =
 

dt 

TA +
 

t 

TA 

x 

dxA +
 

dt 

TA 

y 

dyA +
 

dt 

TA 

z 

dzA (For a particle A) 
dt 

 

DT 
= 

T 

Dt t 
+ u 

T 

x 
+ v 

T 

y 
+ w 

T 
= 

T 

z t 
+ V  T (For any particle) 

D( ) 
Dt 
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Local derivative due to unsteady effect 

Spatial (or Convective) derivative 

- Variation due to the motion of fluid particle 

◉ Relation between Material Derivative and Steadiness of the flow 

D( ) 
= 

( ) 
+ u 

( ) 
+ v 

( ) 
+ w 

( ) 
Dt t x y z 

 

 

 

 

e.g. Uniform flow 

Consider the situation shown 

V = V0 (t)iˆ (Spatially uniform) 

Then the acceleration field, 

a = 
V 

+ u 
V 

+ v 
V

 
+ w 

V 
= 

V 
= 

V0 î
 

 

t x y z t t 

: Uniform, but not necessarily constant in time 

 

◉ Relation between Material Derivative and the Fluid Motion 

D( ) 
= 

( ) 
+ u 

( ) 
+ v 

( ) 
+ w 

( ) 
Dt t x y z 

 
 

 

● Convective acceleration = (V )V : Due to the convection (or motion) 

of the particle from one point to 

another point 

V0(t) 

x 
V0(t) 



INTERNATIONAL INSTITUTE OF TECHNOLOGY & MANAGEMENT, MURTHAL SONEPAT 

E-NOTES ,  Subject : FM and Mechinery,   Subject  Code:  ME302C   Course: B.TECH. , Branch : Mechanical 

Engineering , Sem.-4th  , Unit-1 

( Prepared By:  Ms. Promila , Assistant Professor , MED) 

 

 

 Convective effect: Regardless of steady or unsteady flow 

 

e.g. 1. Convective effect on the temperature 

Consider a situation shown (Water heater) 

Tin (entering): Constant low temp. 

Tout (leaving): Constant high temp. 

: Steady flow 
 

But, 
DT 

= u 
T 

Dt x 
+ v 

T 

y 
+ w 

T 
 0 

z 

 Temperature of each particle: Increase from inlet to outlet 

 

e.g. 2. Convective effect on the acceleration 

 

Consider a situation shown (Water pipe): Steady flow 
 

(1) → (2) (x1 < x < x2) 

Velocity increases (V1 < V2): 

(2) → (3) (x2 < x < x3) 

Velocity decreases (V2 > V3): 

V 
= 0, but acceleration ax = 

t 
 
V 

= 0, but acceleration ax = 
t 

u 
u 

> 0 
x 

 

u 
u 

< 0 
x 

: Due to the convective acceleration 
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V 

t    

    

 

    

◉ Streamline coordinates again (Easy to describe the fluid motion) 
 

Consider 2-D steady flow shown, 
y
 

a) Cartesian coordinates: x, y 

: Unit vectors î  , ĵ 

 

 

 

 
s = 0 

 

 
 

s = s1 

 
s = s2 

n = n2 
 
 
 n = n1 

n = 0 

 

 

 

 
Stream- 

lines 
 

b) Streamline coordinates: s, n 

: Unit vectors ŝ  , n̂ s 

 

From the definition of velocity field x 

V = Vŝ  (always tangent to the streamline direction) 
 

Thus, for steady 2D flow, 
 

a
r       
= 

DV 

Dt 
= 

DVsˆ 
=

 

Dt 

DV 
ŝ + V 

Dt 

Dŝ  
(By the chain rule) 

Dt 
 

= as sˆ + an nˆ 
 

 
 

Then, 
a = 


 

+ 
V ds 

+ 
V dn  

sˆ + V
 sˆ 

+ 
sˆ ds 

+ 
sˆ dn  

 

 
s dt n dt 


 

 
t 

s dt 
n dt 


 

 

  

 

a = 
 V ds  

ŝ + V
 ŝ  ds 

 
 

= 


V 
V  

ŝ + V

V 

 
 

sˆ  
 

 
s dt 

  
s dt 


 

 
s 

  
s 

 

 
where 

ds 
= V 

dt 

 
and 

sˆ 
: Change in direction ( sˆ ) per s 

s 

0: Steady flow 0: Steady flow 

0: along streamline 0: along streamline 
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2 

 
 

As seen in the Figure, 
 

s 
=

 

R 

ŝ  

ŝ 
= ŝ  

: Comparing OAB and OA’B’ 
 

 
 

Thus, 
sˆ 

=
 

 

lim ŝ  
= 

n̂ 
 

s s→0 s R 
 

 

 

 

Finally, 
 

∴ a
r
 

 
= V 

V
 

s 

 

 

ŝ + 

 

 
V 

n̂ 
R 

 
or as =V 

V
 

s 

 

 
V 2 

, an = 
R

 

 

 

 

 

as =V 
V 

: Convective accel. along the streamline (change in speed) 
s 

 

V 2 

an = 
R

 : Centripetal accel. normal to the streamline(change in direction) 

 

Same as those in the previous chapter 
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Fixed 

◉ Defining Volume of fluid in motion 
 

Almost analysis related with fluid mechanics 

- Focus on Motion (or interaction) of a specific amount of fluid 

or Motion of fluid in a specific volume 
 

● Two typical boundaries of fluid of interest 

a) System: Lagrangian concept (Focus on real material) 

- Specific quantity of identified (tagged) fluid matter 

- A variety of interactions with surrounding 

(Heat transfer, Exertion of the pressure force) 

- Possibly change in size and shape 

- Always constant mass (Conservation) 

 

 

 

 
b) Control volume: Eulerian concept 

(Focus on fluid in specific location) 

- Specific geometric volume in space 

- Interested in the fluid within the volume 

- Amount (Mass) within the volume: Change with time 

 

e.g. 

 

 

 
Deforming 

 

 

 

Mostly in this textbook, 

only fixed, uondeformable control volume will be considered. 

System 

Fixed or moving 



 Fluid Dynamics 
 

 

 

 

FUNDAMENTAL LAWS AND EQUATIONS 

 

Kinematics 

 

What is a fluid? Specification of motion 

 

A fluid is anything that flows, usually a liquid or 

a gas, the latter being distinguished by its great rel- 

ative compressibility. 

Fluids are treated as continuous media, and their 

motion and state can be specified in terms of the 

velocity u, pressure p, density , etc evaluated at 

every point in space x and time t. To define the den- 

sity at a point, for example, suppose the point to be 

surrounded by a very small element (small com- 

pared with length scales of interest in experiments) 

which nevertheless contains a very large number of 

molecules. The density is then the total mass of all 

 

 
*Received February 20, 1996. Accepted March 25, 1996. 

 

the molecules in the element divided by the volume 

of the element. 

Considering the velocity, pressure, etc as func- 

tions of time and position in space is consistent with 

measurement techniques using fixed instruments in 

moving fluids. It is called the Eulerian specification. 

However, Newton’s laws of motion (see below) are 

expressed in terms of individual particles, or fluid 

elements, which move about. Specifying a fluid 

motion in terms of the position X(t) of an individual 

particle (identified by its initial position, say) is 

called the Lagrangian specification. The two are 

linked by the fact that the velocity of such an ele- 

ment is equal to the velocity of the fluid evaluated at 

the position occupied by the element: 

dX 
= uX(t ), t  . (1) 

dt 

The path followed by a fluid element is called a 

particle path, while a curve which, at any instant, is 

everywhere parallel to the local fluid velocity vector 
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 
(   

is called a streamline. Particle paths are coincident 

with streamlines in steady flows, for which the 

velocity u at any fixed point x does not vary with 

time t. 

 

Material derivative; acceleration. 

 

Newton’s Laws refer to the acceleration of a par- 

ticle. A fluid element may have acceleration both 

because the velocity at its location in space is chang- 

ing (local acceleration) and because it is moving to 

a location where the velocity is different (convective 

acceleration). The latter exists even in a steady flow. 

How to evaluate the rate of change of a quantity 
at a moving fluid element, in the Eulerian specifica- 

tion? Consider a scalar such as density  (x ,t). Let 
the particle be at position x at time t, and move to  x 

+ x at time t + t, where (in the limit of small t) 
 

x = u(x t )t . (2) 
 

 

 
FIG. 1. – Mass flow into and out of a small rectangular region of 

space. 
 

 

 
etc. Combining all three components in vector short- 

hand we write 
 

Then the rate of change of  following the fluid, 

or material derivative, is 

 
 

Du 
= 

u 
+ (u.)u, 

Dt t 
 

 

(4b) 

 
 

D 
= lim 

Dt t→0 

(x + x t+ t ) − (x, t ) 

t 

but care is needed because the quantity u is not 
defined in standard vector notation. Note that ∂u/∂t 

is the local acceleration, (u.)u the convective 
acceleration. Note too that the convective accelera- 

 
 

= 
 x 

x t 
+ 

 y 

y t 
+ 

 z 
+ 

 

z t t 
 

tion is nonlinear in u, which is the source of the 

great complexity of the mathematics and physics of 

fluid motion. 
 

(by the chain rule for partial differentiation) 
 

 

= 
 

+ u 
 

+ v 
 

+ w 
 

 

 
(3a) 

Conservation of mass 

 
This is a fundamental principle, stating that for 

 
(using (2)) 

t x 
 

 

= 
 

t 

y z 
 

 

 
+ u. 
 

 

 

 

 
(3b) 

any closed volume fixed in space, the rate of 

increase of mass within the volume is equal to the 

net rate at which fluid enters across the surface of 

the volume. When applied to the arbitrary small rec- 

tangular volume depicted in fig. 1, this principle 

in vector notation, where the vector  is the gradi- 

ent of the scalar field  : 

gives: 

 
 

 = 
  

, 
 x 

 
,
 

y 

 
 

 
z  

 
 

 
 

xyz 
 

= yz u 
t x 

− u 
x + x ) + 

 
 

A similar exercise can be performed for each 

component of velocity, and we can write the x-com- 

ponent of acceleration as 

+zx(vy  
− vy + y ) + 

 

+xy(wz  
− wz + z ). 

 
 

Du 
= 

u 
+ u 

u 
+ v 

u 
+ w 

u 
,
 

Dt t x y z 
 

 
(4a) 

 
Dividing by ∆x ∆y ∆ z and taking the limit as the 

volume becomes very small we get 

. 



 
 

   
= − 

  
(u) − (v) − 

 
(w)  (5a) 

t x y z 
 

or (in shorthand) 
 
 

 

 
= −div(u) 

t 
(5b) 

 
 

where we have introduced the divergence of a vec- 

tor. Differentiating the products in (5a) and using 

(3), we obtain 
 

 

 

 

 
 
 

FIG. 2. – An arbitrary region of fluid divided up into small rectan- 
D 

= −divu. 
Dt 

(6) 
gular elements (depicted only in two dimensions). 

This says that the rate of change of density of a fluid 

element is positive if the divergence of the velocity 

field is negative, i.e. if there is a tendency for the 

flow to converge on that element. 

If a fluid is incompressible (as liquids often are, 

effectively) then even if its density is not uniform 

everywhere (e.g. in a stratified ocean) the density of 

each fluid element cannot change, so 
 

 D 
= 0 (7) 

Dt 

that, if two elements A and B exert forces on each 

other, the force exerted by A on B is the negative of 

the force exerted by B on A. 

To apply these laws to a region of continuous 

fluid, the region must be thought of as split up into 

a large number of small fluid elements (fig. 2), one 

of which, at point x and time t, has volume ∆V , say. 

Then the mass of the element is  (x,t) ∆V , and its 

acceleration is Du/Dt evaluated at (x,t). What is the 

force? 

everywhere, and the velocity field must satisfy 
 

divu= 0 
 

or 

 

 
(8a) 

Body force and stress 

 

The force on an element consists in general of 

two parts, a body force such as gravity exerted on 
 

 

u 
+ 

v 
+ 

w 
= 0 . (8b)

 

x y z 
 

This is an important constraint on the flow of an 

incompressible fluid. 

 

The Navier-Stokes equations 

 

Newton’s Laws of Motion 

 

Newton’s first two laws state that if a particle (or 

fluid element) has an acceleration then it must be 

experiencing a force (vector) equal to the product of 

the acceleration and the mass of the particle: 
 

force = mass  acceleration. 

 

For any collection of particles this becomes 

net force = rate of change of momentum 

where the momentum of a particle is the product of 

its mass and its velocity. Newton’s third law states 

the element independently of its neighbours, and 

surface forces exerted on the element by all the other 

elements (or boundaries) with which it is in contact. 

The gravitational body force on the element ∆V is 

g (x, t) ∆V , where g is the gravitational accelera- 

tion. The surface force acting on a small planar sur- 

face, part of the surface of the element of interest, 

can be shown to be proportional to the area of the 

surface, ∆A say, and simply related to its orientation, 

as represented by the perpendicular (normal) unit 

vector n (fig. 3). The force per unit area, or stress, is 

then given by 
 
 

 
FIG. 3. – Surface force on an arbitrary small surface element embed- 
ded in the fluid, with area ∆A and normal n. F is the force exerted 

by the fluid on side 1, on the fluid on side 2. 
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   

      
  

Fx =  xxnx +  xyny +  xznz 
 and the deformation is represented by the rate of 

Fy =  yxnx +  yyny +  yznz 
 

 

(9a) 

deformation (or rate of strain) e which, like stress, is 
 

a symmetric tensor quantity made up of the sym- 

Fz =  zx nx +  zy ny +  zz nz 
metric part of the velocity gradient tensor. Formally, 

 
 

or, in shorthand, e = 
1 (u+ uT ) (12) 

 2 
 

F =  n (9b) 
 

where  is a matrix quantity, or tensor, depending 

or, in full component form, 
 
  

on x and t but not n or ∆A.  is called the stress ten- 
 

sor, and can be shown to be symmetric (i.e. 
yx

= 
xy

, 

 u 
 x 
 

1  u 

2 
 

y 

v  
+ 

x 

 

1  u 
 

2  z 

w   
+  

x  


 

etc) so it has just 6 independent components. 
It is an experimental observation that the stress in 

a fluid at rest has a magnitude independent of n and 

e = 
 1  v 

+ 
u  

 
 

2 
 

x y 

 

v 1  v w  

y 2 
 

z 
+ 

y 

 

(13) 

is always parallel to n and negative, i.e. compres- 
 

1  w u  1  w v  w 


     +   +   
sive. This means that  =  =  =   =  =  

2  x z  2  y z  z 


 
xy yz zx xx yy   

 
 


zz
= −p, say, where p is the positive pressure (hydro- 

static pressure); alternatively, 
 

Note that the sum of the diagonal elements of e is 

 = –p I (10) equal to div u. 


 
  

It is a further matter of experimental observation 
where I is the identity matrix. 

 

The relation between stress and deformation rate 

 

In a moving fluid, the motion of a general fluid 

element can be thought of as being broken up into 

three parts: translation as a rigid body, rotation as a 

rigid body, and deformation (see fig. 4). 

Quantitatively, the translation is represented by the 

velocity field u, the rigid rotation is represented by 

that, whenever there is motion in which deformation 

is taking place, a stress is set up in the fluid which 

tends to resist that deformation, analogous to fric- 

tion. The property of the fluid that causes this stress 

is its viscosity. Leaving aside pathological (‘non- 

Newtonian’) fluids the resisting stress is generally 

proportional to the deformation rate. Combining this 

stress with pressure, we obtain the constitutive equa- 

tion for a Newtonian fluid: 

the curl of the velocity field, or vorticity,  = –p I + 2µ e – 2/3µ div uI (14) 
    

 = curlu , (11) 
 

 
 

 

The last term is zero in an incompressible fluid, and 

we shall ignore it henceforth. The quantity µ is the 

dynamic viscosity of the fluid. 

To illustrate the concept of viscosity, consider the 

unidirectional shear flow depicted in fig. 4 where 

the plane y=0 is taken to be a rigid boundary. The 

normal vector n is in the y-direction, so equations 

(9) show that the stress on the boundary is 

F = ( xy ,  yy ,  zy ). 
 

From (14) this becomes 
 

FIG. 4. – A unidirectional shear flow in which the velocity is in the 
x- direction and varies linearly with the perpendicular component  
y : u = y. In time ∆t a small rectangular fluid element at level y

0  
is 

translated  a  distance  y
0
∆t,  rotated  through  an  angle  /2, and 

deformed so that the horizontal surfaces remain horizontal, and the 
vertical surfaces are rotated through an angle . 

F = (2exy , − p + eyy , ezy ), 
 

 

but because the velocity is in the x-direction only 

and varies with y only, the only non-zero component 



( 

 − 

 
of e is 

 

 
 

exy 
= 

1 u 

2 y 

 
 

 

. Hence 
 
 

( xx x + x − xx x )yz. 
 

If ∆x is small enough, this is 

F = 
 

 
u 

, − p, 0

 

 
  xx 

 
 

 
y 

 
 

 

xyz. 
x 

 
In other words, the boundary experiences a perpen- 

dicular stress, downwards, of magnitude p, the pres- 

The x-component of the forces on the faces per- 

pendicular to the y-axis is 

sure, and a tangential stress, in the x-direction, equal 

to µ times the velocity gradient ∂u/∂y. (It can be 

seen from (9) and (14) that tangential stresses are 

 
 

 

 xy y + y 

 zx = 
 xy 

xyz, 
xy y  y

 
 

 

always of viscous origin.) 

 

The Navier-Stokes equations 

and similarly for the faces perpendicular to the z- 

axis. Hence the x-component of Newton’s Law 

gives 

 

The easiest way to apply Newton’s Laws to a 

moving fluid is to consider the rectangular block 

 
 

(xyz) 
Du 

= g 
Dt 

)xyz + 

element in fig. 5. Newton’s Law says that the mass   
xx

 
 

 

 
xy

 
 

 

 
xz 

 
 

 of the element multiplied by its acceleration is equal 
to the total force acting on it, i.e. the sum of the body 

force and the surface forces over all six faces. The 

+ + 

 x 
+ 

y z 
 xyz 
 

 
 

resulting equation is a vector equation; we will con- 

sider just the x-component in detail. The x-compo- 

or, dividing by the element volume, 

nent of the stress forces on the faces perpendicular 
 

 
Du 

= g 
+ 

 xx  + 
 xy  

+ 
 xz .

 
   

to the x-axis is the difference between the perpen- 

dicular  stress  
xx   

evaluated  at  the  right-hand face 
Dt x x y z 

 
 

(15a) 

(x+∆x) and that evaluated at the left-hand face (x) 

multiplied by the area of those faces, ∆y∆z, i.e. 

Similar equations arise for the y- and z-components, 

and they can be combined in vector form to give 
 

 

 
FIG. 5. – Normal and tangential surface forces per unit area (stress) on a small rectangular fluid element in motion. 

  

x 
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 

 

y   

third 

 
 

 
Du 

Dt 

 
= g + div  

 

 
(15b) 

 
 

permitted are discussed below. When it is allowed, 

however, we can put µ = 0 in equations (16) and 

these are greatly simplified. 

The equations can be further transformed, using 

the constitutive equation (14) (with div u = 0) and 
(13) to express e in terms of u, to give for (15a) 

 

For quantitative purposes we should note the val- 

ues of density and viscosity for fresh water and air 

at 1 atmosphere pressure and at different tempera- 

tures: 
 

 

Du p 
 

  

  2u 
 

 

 2u 
 

 

 2u  
 

 

 
Dt 

= gx − 
x

 
+  + 

 x 2 
y2 

+
 

2 . 
z  

(16a) Temp Water Air (dry) 
(kgm-3) µ(kgm-1s-1) (kgm-3) µ(kgm-1s-1) 

Similarly in the y- and z-directions: 

0˚C 1.0000 x 103 1.787 x 10-3 1.293 1.71 x 10-5 
 

Dv p   2v  2v  2v  
 = g  − +  + + 

Dt y  x2 y2 z2  
 

 

 
 

Dw p   2w  2w  2w  
 

     

 

(16b) 

10˚C 0.9997 x 103 1.304 x 10-3 1.247 1.76 x 10-5 

20˚C 0.9982 x 103 1.002 x 10-3 1.205 1.81 x 10-5 

 
Boundary conditions 

 
Dt 

= gz − 
z

 
+  + 

 x 2 
y2 

+
 

2 . 
z  

(16c) 
Whether the fluid is viscous or not, it cannot 

In these equations, it should not be forgotten that 

Du/Dt etc are given by equations (4). 

Finally, the above three equations can be com- 

pressed into a single vector equation as follows: 
 

Du 

cross the interface between itself and another medi- 

um (fluid or solid), so the normal component of 

velocity of the fluid at the interface must equal the 

normal component of the velocity of the interface 

itself: 
 = g − p + 2u 

Dt 
 

(16d) 

un = Un or n. u = n. U 

 

(17a) 

 

where the symbol 
 

 

 

2 
is shorthand for 

 

where U is the interface velocity. In particular, on a 

solid boundary at rest, 

 2  2    

x 2 
+ 

y2 
+ 

z2 
.
 

Equations (16a-c), or (16d), are the Navier-Stokes 

equations for the motion of a Newtonian viscous 

fluid. Recall that the left side of (16d) represents the 

mass-acceleration, or inertia terms in the equation, 

while the three terms on the right side are respec- 

tively the body force, the pressure gradient, and the 

viscous term. 

The four equations (16a-c) and (8b) are four non- 

linear partial differential equations governing four 

unknowns, the three velocity components u,v,w, and 

the pressure p, each of which is in general a function 

of four variables, x, y, z and t. Note that if the densi- 

ty  is variable, that is a fifth unknown, and the cor- 

responding fifth equation is (7). Not surprisingly, 

such equations cannot be solved in general, but they 

can be used as a framework to understand the 

physics of fluid motion in a variety of circum- 

stances. 

A particular simplification that can sometimes be 

made is to neglect viscosity altogether (to assume 

that the fluid is inviscid). Conditions in which this is 

n.u = 0 (17b) 

 

In a viscous fluid it is another empirical fact that 

the velocity is continuous everywhere, and in partic- 

ular that the tangential component of the velocity of 

the fluid at the interface is equal to that of the inter- 

face - the no-slip condition. Hence 

 

u = U (18) 

 

at the interface (u = 0 on a solid boundary at rest). 

There are boundary conditions on stress  as 

well as on velocity. In general they can be sum- 

marised by the statement that the stress F (eq.9) 

must be continuous across every surface (not the 

stress tensor, note, just  .n), a condition that fol- 


lows from Newton’s  law. At a solid 
bound- 
ary this condition tells you what the force per unit 

area is and the total stress force on the boundary 

as a whole is obtained by integrating the stress 

over the boundary (thus the total force exerted by 

the fluid on an immersed solid body can be calcu- 

lated). 



0 

When the fluid of interest is water, and the 

boundary is its interface with the air, the dynamics 

of the air can often be neglected and the atmosphere 

can be thought of as just exerting a pressure on the 

liquid. Then the boundary conditions on the liquid’s 

motion are that its pressure (modified by a small vis- 

cous normal stress) is equal to atmospheric pressure 

and that the viscous shear stress is zero. 

 

 
CONSEQUENCES: PHYSICAL PHENOMENA 

 

Hydrostatics 

 

We consider a fluid at rest in the gravitational 

field, with a free upper surface at which the pressure 

is atmospheric. We choose a coordinate system x, y, 

z such that z is measured vertically upwards, so g
x 
= 

g
y 
= 0 and g

z  
= -g, and we choose z = 0 as the level 

 

 
 

 
FIG. 6. – Flow of a uniform stream with velocity U

∞ 
in the x-direc- 

tion past a body with boundary S which has a typical length scale L. 

 

Note that, for constant density problems in which 

the pressure does not arise explicitly in the boundary 

conditions (e.g. at a free surface), the gravity term 

can be removed from the equations by including it in 

an effective pressure, p
e
. Put 

 
of the free surface. The density  may vary with 
height, z. Thus all components of u are zero, and 

pe = p + gz (21) 

pressure p = p
atm 

at z = 0. The Navier-Stokes equa- 
tions (16) reduce simply to 

in equations (16) (with g
x 
= g

y 
= 0, g

z
= -g) and see 

that g disappears from the equations, as long as p
e
 

 
 

p 
=

 

x 

Hence 

p 
= 0, 

y 
 

 

 
 

p 
= −g. 

z 

replaces p. 

 

Flow past bodies 

p= p 
 

atm + gz 
dz 

 

(19) The flow of a homogeneous incompressible 

fluid of density  and viscosity µ past bodies has 

or, for a fluid of constant density, 
 

p = patm − gz : 
 

the pressure increases with depth below the free sur- 

face (z increasingly negative). 

The above results are independent of whether 

there is a body at rest submerged in the fluid. If there 

is, one can calculate the total force exerted by the 

fluid by integrating the pressure, multiplied by the 

appropriate component of the normal vector n, over 

the body surface. The result is that, whatever the 

shape of the body, the net force is an upthrust and 

equal to g times the mass of fluid displaced by the 

body. This is Archimedes’ principle. If the fluid den- 

sity is uniform, and the body has uniform density 
b
, 

then the net force on the body, gravitational and 

upthrust, corresponds to a downwards force equal to 
 

 

always been of interest to fluid dynamicists in 

general and to oceanographers or ocean engineers 

in particular. We are concerned both with fixed 

bodies, past which the flow is driven at a given 

speed (or, equivalently, bodies impelled by an 

external force through a fluid otherwise at rest) 

and with self-propelled bodies such as marine 

organisms. 

 

Non-dimensionalisation: the Reynolds number 

 

Consider a fixed rigid body, with a typical 

length scale L, in a fluid which far away has con- 

stant, uniform velocity U
∞ 

in the x-direction (fig. 6). 

Whenever we want to consider a particular body, 

we choose a sphere of radius a, diameter L 

= 2a. The governing equations are (8) and (16), and 

the boundary conditions on the velocity field are 

(b − )Vg 
 

(20)  
u = v = w = 0 on the body surface, S (22) 

where V is the volume of the body. The quantity  

(
b 
– ) is called the reduced density of the body. 

 

u → U , v → 0, w → 0 
 

 

at infinity. (23) 
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    

2 

Usually  the  flow  will  be  taken  to  be   steady,  ie where A (proportional to L2)is the frontal area of the 
 

  
, but we shall also wish to think about devel- body (πL2/4 for a sphere) and C is called the drag 

 0 coefficient. It is a dimensionless number,  computed 
t by integrating the dimensionless stress over the sur- 

opment of the flow from rest. 

For a body of given shape, the details of the flow 

(i.e. the velocity and pressure at all points in the 

fluid, the force on the body, etc) will depend on U
∞
, 

L , µ and  as well as on the shape of the body. 

However, we can show that the flow in fact depends 

only on one dimensionless parameter, the Reynolds 

number 
 

 

Re = 
LU , (24) 

 
 

and not on all four quantities separately, so only 

one range of experiments (or computations) would 

be required to investigate the flow, not four. The 

proof arises when we express the equations in 

dimensionless form by making the following trans- 

formations: 
 

x  = x / L,  y  = y / L,  z  = z / L,  t  = Ut / L, 
 

face of the body. 

From now on time and space do not permit deriva- 

tion of the results from the equations. Results will be 

quoted, and discussed physically where appropriate. 

It can be seen from (26) that, in order of mag- 

nitude terms, Re represents the ratio of the non- 

linear inertia terms on the left hand side of the 

equation to the viscous terms on the right. The flow 

past a rigid body has a totally different char- acter 

according as Re is much less than or much greater 

than 1. 

 

Low Reynolds number flow 

 

When Re <<1, viscous forces dominate the flow 

and inertia is negligible. Reverting to dimensional 

form, the Navier-Stokes equations (16d) reduce to 

the Stokes equations 
 

 
 

u  = u / U  ,  v  = v / U  ,  w  = w / U  , p  = p / U2 . pe = 2u , (29) 
 

 

Then the equations become: (8b): 
 

 

where gravity has been incorporated into p
e 
using 

 

 

 

(16a), with 
 

 

u  
+ 

v  
+ 

w  
= 0 ; (25)

 

x  y  z  
 

Du 

Dt replaced by (4a): 
 

eq. (21). The conservation of mass equation div u = 
0, is of course unchanged. Several important con- 

clusions can be deduced from this linear set of equa- 

tions (and boundary conditions). 

(i) Drag The force on the body is linearly related 

to the velocity and the viscosity: thus, for example, 
u  

+ u  
u  

+ v' 
u  

+ w' 
u  

=
 the drag is given by 

t  x  y  z  

p    1     2u   2u   2u   
 

   

(26) D = kU L (30) 
= − 

x  
+ 

Re 
 x 2 

+ 
y 2 

+ 
z 2 


 

  for  some dimensionless constant k  (thus the  drag 

coefficient C
D  

is inversely proportional to Re). In 
and there are similar equations starting with v´/t´, 

w´/t´. The boundary condition (22) is unchanged, 

though the boundary S is now non-dimensional, so 

its  shape  is  important  but  L  no  longer  appears. 

particular, for a sphere of radius a, k = 3π, so 
 

D = 6U a 
 

 
 

(31) 

Boundary condition (23) becomes It is interesting to note that the pressure and the 

viscous shear stress on the body surface con- 
 

 

u→ 1, v→ 0, w→ 0 
at infinity. (27) tribute comparable amounts to the drag. The net 

gravitational force on a sedimenting sphere of 
Thus Re is the only parameter involving the physi- density  , from (20), is ( -)·a3g. This must 

b b 

cal inputs to the problem that still arises. 
The drag force on the body (parallel to U

∞
) 

proves to be of the form: 

be balanced by the drag, 6πU
s
a, where U

s 
is the 

sedimentation speed. Equating the two gives 
 

 
 

D = 1 U 2 AC 
 

 

 
(28) 

Us = 
2 (b 

9 

− )ga2
 

 
(32) 

 

D 

D 



 
 

FIG. 7. – (a) Sketch of a swimming spermatozoon, showing its position at two successive times and indicating that, while 
the organism swims to its left, the wave of bending on its flagellum propagates to the right. (b) Blow up of a small element 
s of the flagellum indicating the force components normal and tangential to it, proportional to the normal and tangential 

components of relative velocity. 

 

 

For example, a sphere of radius 10 µm, with density 

10% greater than water (=103kg m-3, µ≈11kg m-1s-1) 
will sediment out at only 20 µm-1, whereas if the radius 
is 100 µm, the sedimentation speed will be 2 mms-1. 

(ii) Quasi-steadiness. Because the ∂/∂t term in 

the equations vanishes at low Reynolds number, it is 

immaterial whether the relative velocity of the body 

(or parts of it) and the fluid is steady or not. The 

flow at any instant is the same as if the boundary 

motions at that instant had been maintained steadily 

for a long time - i.e. the flow (and the drag force etc) 

is quasi-steady. 

(iii) The far field. It can be shown that the far 

field flow, that is the departure of the velocity 

field from the uniform stream U
∞
, dies off very 

slowly as the distance r from an origin inside the 

body becomes large. In fact it dies off as  1/r, 

much more slowly, for example, than the inverse 

square law of Newtonian gravitation or electro- 

statics. This has an important effect on particle - 

particle interactions in suspensions. Moreover, 

this far field flow is proportional to the net force 

vector –D exerted by the body on the fluid, inde- 

pendent of the shape of the body. Thus, in vector 

form, we can write 

1  (P.x)x  

Measuring the far field is therefore one potential 

way of estimating the force on the body. 

The only exception to the above is the case 

where the net force on the body (or fluid) is zero, 

as for a neutrally buoyant, self-propelled micro- 

organism. In that case P is zero, the far field dies 

off like 1/r2, and it does depend on the shape of 

the body and the details of how it is propelling 

itself. 

(iv) Uniqueness and Reversibility. If u is a 

solution for the velocity field with a given veloci- 

ty distribution u
s 
on the boundary S, then it is the 

only possible solution (that seems obvious, but is 

not true for large Re). It also follows that –u is the 

(unique) velocity field if the boundary velocities 

are reversed, to –u
s
. Thus if a boundary moves 

backwards and forwards reversibly, all elements of 

the fluid will also move backwards and forwards 

reversibly, and will not have moved, relative to the 

body, after a whole number of cycles. Hence a 

micro-organism must have an irreversible beat in 

order to swim. 

(v) Flagellar propulsion. Many micro-organ- 

isms swim by beating or sending a wave down 

one or more flagella. Fig. 7 sketches a monofla- 

gellate (e.g. a spermatozoon). It sends a, usually 

 
 

where 

u − U   
r 

P + 
r 

2 
 

 
P =

 -D 
.
 

8 

(33) 
 

 

 
(34) 

helical, wave along the flagellum from the head. 

This is a non-reversing motion because the wave 

constantly propagates along. The reason that  

such a wave can produce a net thrust, to over- 

come the drag on the head (and on the tail too) is 

that about twice as much force is generated by a 
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b 

c 

 
 

 

 

FIG. 8. – Photographs of streamlines (a, b) or streaklines (c) for steady flow past a circular cylinder at 
different values of the Reynolds number (M.Van Dyke, 1982): (a) Re <<1, (b) Re ≈ 26, (c) Re ≈ 105. 

a 



segment of the flagellum moving perpendicular 

to itself relative to the water as is generated by 

the same segment moving parallel to itself. This 

fact forms the basis of resistive force theory for 

flagellar propulsion, which is a simple and rea- 

sonably accurate model for the analysis of flagel- 

lar locomotion. 

Higher Reynolds number. 

 

It is convenient now to restrict attention to a 2D 

flow of a homogeneous fluid past a 2D body such as 

a circular cylinder (fig. 8). In such a 2-D flow, with 

velocity components u = (u,v,0), functions of x,y and 

t, the vorticity is entirely in the third, z, direction, 

and is given by 

Vorticity 

 

The dynamics of fluid flow can often be most 

 
 

  = 
v 

x 
− 

u 
.
 

y 

deeply understood in terms of the vorticity, defined 

by equation (11) and representing the local rotation 

of fluid elements. High velocity gradients corre- 

spond to high vorticity (see fig. 4). If we take the 

curl of every term in the Navier-Stokes equation we 

obtain the following vorticity equation (in vector 

notation): 
 

 

There is no vortex-line stretching, and the only 

effect which can generate vorticity anywhere is 

viscosity. Let us suppose that the uniform stream  

at infinity is switched on from rest at the initial 

instant. Initially there is no vorticity  anywhere, 

and the initial irrotational velocity field is easy to 

calculate. It satisfies all the governing equations 

and all boundary conditions except the no-slip  
+ (u.) = ( .)u + 2 +

 1 
  p (35) condition at the cylinder surface. The predicted 

t 2 
 

where  = µ/ is the kinematic viscosity of the fluid 

(assumed constant). This equation tells us that the 

vorticity, evaluated at a fluid element locally 

parallel to , changes, as that element moves, as a 

result of three effects, each repre- sented by one of 

the terms on the right hand side of (35). The first 

term can be shown to be associ- ated with rotation 

and stretching (or compres- sion) of the fluid 

element, so that the direction of 

 remains parallel to the original fluid element, 

and increases in proportion as the length of that 

element changes. Such vortex-line stretching is a 

dominant effect in the generation and mainte- 

nance of turbulence. It is totally absent in a two- 

dimensional (2D) flow in which there is no 

velocity component in one of the coordinate 

directions (say z) and the variables are indepen- 

dent of z. The second term represents the effect  

of viscosity, and is diffusion-like in that vorticity 

tends to spread out from elements where it is high 

to those where it is low. The last term comes 

about only in non-uniform (e.g. stratified) fluids, 

and can be important in some oceanographic sit- 

uations. 

It can also be shown that, in a flow started  

from rest, no vorticity develops anywhere until 

viscous diffusion has had an effect there. As we 

shall see, the only source of vorticity, in such a 

flow and in the absence of the last term in (35), 

occurs at solid boundaries on account of the no- 

slip condition. 

slip velocity therefore generates an infinite veloci- 

ty gradient ∂u/∂y and hence a thin sheet, of infinite 

vorticity at the cylinder surface. Because of vis- 

cosity, this immediately starts to diffuse out from 

the surface. At low values of Re, when viscosity is 

dominant and the convective term (u.) in (35)  

is negligible, the diffusion is rapid, and vorticity 

spreads out a long way in all directions. An even- 

tual steady state is set up in which the flow is 

almost totally symmetric front-to-back (fig. 8a); 

unlike the spherical case, the drag  coefficient  is 

not quite inversely proportional to the Reynolds 

number: 
 

 

C   =
 8 

. 
D Re log(7. 4 / Re) 

 

At somewhat higher values of Re, the (u.) 

term is not totally negligible, and once vorticity has 

reached any particular fluid element it tends to be 

carried along by it as well as diffusing on to other 

elements. Hence a front-to-back asymmetry devel- 

ops. For Re greater than about 5 the flow actually 

separates from the wall of the cylinder, forming two 

slowly recirculating flow regions (eddies) at the 

rear. At still higher Re, it is observed that the eddies 

tend to break away alternately from the two sides of 

the cylinder, usually at a well-defined frequency 

equal to about 0.42 U
∞
/a for Re  600, and steady 

flow is no longer possible. At higher Re the wake 

becomes turbulent (i.e. random and three-dimen- 

sional) and at Re  2 105 the flow on the cylinder 

surface becomes turbulent. 
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FIG. 9. – Sketch of boundary layer and wake for steady flow at high Reynolds number past a symmetric streamlined body. 

 

 

Steady flows at relatively high Reynolds number 

do seem to be possible past streamlined bodies such 

as a wing (or a fish dragged through the fluid), see 

fig. 9. Diffusion causes vorticity to occupy a 

(boundary) layer of thickness (t)1/2 after time t. 

However, even a fluid element near the leading edge 

at first will have been swept off downstream past the 

trailing edge after a time t = L/U
∞
, where L is the 

length of the wing chord. Hence the greatest thick- 

ness that the boundary layer on the body can have is 
 

1/ 2 

and it is easy to see that a steady state can develop 

everywhere on the body, with a boundary layer of 

thickness up to 
s
, and a thin wake region, also con- 

taining vorticity, downstream. Note that the bound- 

ary layer of vorticity remains thin compared with the 

chord length if 
s 
<< L, i.e. Re >>1. In that case (and 

only then) neglecting viscosity altogether, and for- 

getting about the boundary layer, is accurate 

enough, except in calculating the drag. 

Drag on a symmetric body at large Reynolds 

number. In order to estimate the force on a body it 

s = (L / U ) , (36) is necessary to work out the distribution of pressure 

 

pp 
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FIG. 10. – Sketch of streamlines and pressures for flow past a circular cylinder. (a) Idealised flow of a fluid with no viscosity; (b) separated 
flow at fairly high Reynolds number in a viscous fluid. 
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FIG. 11. – Log-log plot of drag coefficient versus Reynolds number for steady flow past a circular cylinder. [The sharp reduction in C
D 

at 
Re ≈ 2  105 is associated with the transition to turbulence in the boundary layer]. Redrawn from Schlichting (1968). 

 

round the body. In a steady flow of constant density 

fluid in which viscosity is unimportant (e.g. outside 

the boundary layer and wake of a body) equation 

(16d) can be integrated to give the result that the 

metric (fig. 10a). At the front stagnation point S
1
, 

the point of zero velocity where the streamline 

dividing flow above from flow below impinges, the 

pressure is high (p = p +1/2U2 ), and this high 
∞ ∞ 

quantity 

p + pgz + 
1 

 u 2 = constant 

 
 
(37a) 

pressure is balanced by an equally high pressure at 

the rear stagnation point S
2
. The pressure at the sides 

(A , A  ) is low (p = p  –3/2U2 ). The net effect is that 
2 1 2 ∞ ∞ 

along streamlines of the flow. Here z is measured 

vertically upwards and |u| is the total fluid speed. 

This result is equivalent to the Newtonian principle 

of conservation of energy; equation (37a) is called 

Bernoulli’s equation. If we forget about the gravita- 

tional contribution, replacing p + pgz by the effec- 

tive pressure p
e 
(eq. 21), equation (37a) becomes 

1 

the hydrodynamic force on the cylinder is zero. 

In a viscous fluid, as stated above, there is a thin 

boundary layer on the front half, in which the 

velocity falls from a large value to zero, so the pres- 

sure distribution is similar to that described above; 

however the flow separates on the rear half and 

things are very different. The reason for the separa- 

tion is that the adverse pressure gradient (the pres- 

sure rise), from A
1 
to S

2 
say, causes the low veloci- 

p
e 
= constant – 

2 
 u 2; (37b) ty in the boundary layer to tend to reverse its  direc- 

tion,  and  it  is  observed  that  separation  occurs as 

henceforth we just write p for p
e
. If the fluid speeds 

up, the pressure falls, and vice versa, which is intu- 

itively obvious since a favourable pressure gradient 

is clearly required to give fluid elements positive 

acceleration. 

soon as flow reversal takes place. In the separated 

flow region (fig. 10b) the fluid velocity is low and 

the pressure remains close to its value at the sides. 

Thus there is a front-to-back pressure difference 

proportional to U2 , and the drag coefficient C 
∞ D 

In the case of flow past a symmetric body, (fig. 

10a), all streamlines start from a region of uniform 

pressure (p
∞ 

say) and uniform velocity (U
∞
), so the 

constant in (37b) is the same for all streamlines,     

p +1/2U2 . If viscosity were really negligible, then 

(eq. 28) is approximately constant, independent of 

Re as long as Re is large (see fig. 11). The direct 

contribution of tangential viscous stresses to the 

drag is negligibly small, although it is the presence 

of viscosity which causes the flow separation in the 
∞ ∞ 

the flow round a circular cylinder would be sym- first place. 
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(b) 

   

Lift. For a symmetric streamlined body (fig. 9) 

flow separation occurs only very near the trailing 

edge, and direct viscous drag is more important. 

However, if such a streamlined body (or wing) is 

tilted so that the oncoming flow makes an angle of 

incidence with its centre plane, viscosity again has 

an important effect. In general, a non-viscous flow 

past a wing at incidence would turn sharply round 

the trailing edge, where the velocity would be 

extremely high and the pressure extremely low (fig. 

12a). As the flow starts up from rest, viscosity caus- 

es separation at the corner, a concentrated vortex is 

shed and left behind, and thereafter the flow is 

forced to come tangentially off the trailing edge: the 

Kutta-condition (fig. 12b). In order to achieve this 

tangential flow, the velocity on top of the wing must 

increase and the velocity below must decrease. It 

follows from Bernoulli’s equation that the pressure 

above the wing must fall, and that below rise, so a 

transverse force is generated. This is call lift and 

keeps aircraft and birds in the air against gravity. 

The magnitude of the lift is also represented by a lift 

coefficient C
L 
: 

1 2 
 

 

 

 
 

 

 
 

 

 

 
 
 

FIG. 12. – Flow past a streamlined body at incidence. (a) Idealised 
flow of a fluid with no viscosity - large velocity and pressure gradi- 

ent round the trailing edge. (b) In a viscous fluid the flow must 
come smoothly off the trailing edge, which explains the generation 

of lift (see text). 

L = 
2 

U SCL , 
(38) 

where S is the horizontal area of the wing. Like C
D
, 

C
L 
is approximately independent of Re for large Re . 

Added mass. We have seen that the force on a body 

in an inviscid fluid is zero when the flow is steady. 

When the flow is unsteady, however, the force is 

non-zero, because accelerating the body rel- ative to 

the fluid requires that the fluid also has to be 

accelerated. Thus the body exerts a force on the 

fluid and so, by Newton’s third law, the fluid exerts 

an equal and opposite force on the body. In all cases, 

this force is equal in magnitude to the acceleration 

of the body relative to the fluid multiplied by the 

mass of fluid displaced by the body (V in the nota- 

tion of eq. 20) multiplied by a constant, say : 
 

F=V dU/dt. (39) 
 

For a sphere,  = 0.5; for a circular cylinder,  = 1. 

The quantity V is call the added mass of the body 

in question (recall that  is the fluid density). The 
corresponding force, given by (39), is called the 
acceleration reaction, or the reactive force. 

Fish swimming. We have seen that flagellates 

such as spermatozoa swim by sending bending 

waves down their tails, and thrust is generated 

through the viscous, resistive force. Inertia is negli- 

 

gible because the Reynolds number is small. For 

most fish, the Reynolds number is large, but never- 

theless many fish also swim by sending a bending 

wave down their bodies and tails. In this case, how- 

ever, thrust is generated primarily by the reactive 

force associated with the sideways acceleration of the 

elements of fluid as they pass down the animal (rela- 

tive to a frame of reference fixed in the fish’s nose). 

Lighthill has developed a simple, reactive-force 

model for fish swimming. 

 

Flow in the open ocean 

 

Water waves 

 

The most obvious dynamical feature of the 

ocean, to even a casual observer, is the presence of 

surface waves, of a variety of lengths and heights. 

Waves are mainly generated as a result of stresses 

exerted by the wind, although they can also arise 

through the impact or relative motion of foreign 

bodies such as rain drops or ships. Once generated, 

however, waves can propagate over large distances 

and persist for long times, unaffected by the atmos- 

phere or solid bodies. 

(a) 



In a periodic wave motion, all fluid elements 

affected by it experience oscillations. Like all 
 = A cos(t − kx −  ), (42) 

oscillations, such as that of a simple pendulum, 

these oscillations come about as an interaction 

between a restoring force, tending to restore a par- 

again for constant A and . The speed of propagation 

of the wave crests, or phase velocity, is 
 

 

  g  
1 2  

ticle to a nearby equilibrium position, and inertia, 
which causes the particle to overshoot each time it 

c = 
k 

= 
 k  

. (43) 

reaches its equilibrium position (in real systems 

there is also some viscous damping, which causes 

the amplitude of the oscillations to die out after a 

long time, if there is no further stimulation; we 

ignore damping here). In the case of a simple pen- 

dulum (a mass suspended by a light string) the 

equilibrium state is one in which the string is ver- 

tical and the mass at rest, the restoring force is 

Thus long waves (small k) travel more rapidly than 

short waves (large k). This explains why, when the 

waves are generated by a localised disturbance, such 

as a storm at sea, or a stone dropped in a pond, the 

longer waves (swell) arrive at the shore first. In this 

case, the wave front travels at a different speed, 

called the group velocity, c
g
: 

 
 1 

gravity and the inertia is the momentum of the c = 
d 

= 
1  g  2 

, (44) 

mass itself. In the case of water waves, the equilib- 
g dk 2  k  

 

rium state has the free surface horizontal, the 

restoring force is again gravity (except for small 

wavelengths, when surface tension is also impor- 

tant) and the inertia is the momentum of the fluid. 

Viscosity is negligible because there are no solid 

boundaries generating vorticity. 

In an oscillation of small amplitude, every parti- 

cle exhibits simple harmonic motion: its vertical dis- 

placement, say Y, from equilibrium, varies with time 

according to the differential equation 

so that wave crests, travelling faster, appear to arise 

at the back of the packet of waves, and to disappear 

at the front. 

When a water wave propagates, with its free sur- 

face given by (42), fluid elements at and below the 

surface move in circular paths, and the amplitude of 

their motion falls off exponentially with depth below 

the surface: the amplitude is proportional to Aekz 

when the undisturbed surface is at z = 0. Thus the 

amplitude is negligibly small at a depth of only half 
 

 

d 2Y 

dt 
2 +  

2Y = 0. 
 

 

 

(40) 

a wavelength (kz = -π). This explains why the theo- 

ry of waves in very deep water works well in rela- 

tively shallow water, too, with depth h greater than 

The general solution for Y is a sinusoidal oscilla- 

tion of the form 

half a wavelength. When the waves are very long, or 

the water very shallow, equation (41) is replaced by 
 

  

Y = Acos(t −  ) 
 

 = (gk tanh kh) (45) 
 

where A and  are constants (determined by initial 
conditions), the amplitude and phase respectively, 

and  is the angular frequency of the oscillation 

(the frequency in Hertz is /2π). In the case of a 

simple pendulum,  = (g/l)1/2 where l is the length 
of the string. In the case of simple water waves of 

wave length  = k (k is the wave number), in an 

ocean whose depth is much greater than , we 
have 

Small amplitude wave theory is very useful, 

because the equations are linear and a general 

motion can be made up from the addition of many 

sinusoidal components such as (42) (a Fourier series 

or transform). At larger amplitudes, nonlinear 

effects become important and the theory becomes 

less general, although many interesting and impor- 

tant phenomena arise, such as wave breaking. 

 

Internal waves 

 = (gk)1/2 (41) 

 

as long as surface tension is negligible. 

Suppose a parallel-crested (one-dimensional) 

train of such waves is propagating in the x-direction. 

Then the displacement of the free surface will be 

given by 

 

Although the water in the ocean is effectively 

incompressible, it does not have uniform density 

because it is stratified on account of the variation 

with depth of the pressure and, to a lesser extent, the 

temperature and the salinity. The temperature/densi- 

ty distribution is marked usually by one or more 

1/ 2 
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thermoclines, in which the density gradient is steep- 

er than elsewhere. Whether the density gradient is 

uniform or locally sharp, less dense fluid sits, in 

equilibrium, above denser fluid. A disturbance to 

this state causes some heavy fluid elements to rise 

above their original level, and some light ones to fall 

below. As in the case of surface waves, gravity then 

provides a restoring force and internal gravity waves 

can propagate. As for surface waves, a relation can 

large-scale circulation of the oceans. To analyse 

such motions, it is necessary to recognise that the 

natural frame of reference is fixed in the rotating 

earth, and the governing equations of motion have to 

be changed accordingly. If viscosity is neglected, the 

equation of motion of a fluid in a frame of reference 

rotating with constant angular velocity  becomes 

(in place of (16d)): 
 

 Du 
be calculated between the frequency and the wave 

number of such waves. For example, if there is a 

 +  u = g − p. 
Dt 

 

(50) 

sharp interface between two deep regions of fluid 
with densities 

1 
(above) and 

2
, then equation (41) 

is replaced by 

Here g has been modified to include the small “cen- 

trifugal force’’ term, and we could also incorporate 

it into the pressure using (21). The additional term 

2 
 u 

 

is called the Coriolis force. 

   = gk(2  − 1 ) / (2  + 1 ). (46) Time does not permit a thorough investigation of 

the dynamics of rotating fluids. We consider only a 

This can be seen to give much lower frequencies 
than (41) if (

2 
– 

1
) is not large: if 

2 
– 

1 
= 0.1 

2 
, 

then the frequency given by (46) is 4.4 times small- 
er than that given by (41) (with 

2 
= ). The propa- 

gation speed is correspondingly smaller, too. 

flow in which the Coriolis force is much larger than 

the other inertia terms and therefore must by itself 

balance the gradient in (effective) pressure: a 

geostrophic flow. For such a flow, (50) reduces to 

When the density gradient is uniform, with  u = −p. 
 

 

(51) 

g d 
= − N 2 , 

 dz 
(47) Suppose the flow is horizontal: u= (u, v, 0 ), with z 

vertically upwards again. Then the horizontal com- 

where N is a constant with the dimensions of a fre- 

quency (the Brunt -Väisälä frequency), the situation 

is a bit more complicated, because internal waves do 

not have to propagate horizontally. Indeed, a wave 

ponents of the pressure gradient are given by 
 

 

p 
= − v, 

p 
= + u 

x  y  

 
 

(52) 

whose crests propagate at an angle  to the horizon- 

tal, so that the displacement of a fluid element is 

given by 

y = A cos(t − k(x cos  + z sin  )), 

has a frequency  given by 

 = N cos  . (48) 

 

However, the group velocity (velocity of a wave 

front, or of energy propagation) is perpendicular to 

the phase velocity, and in this case is given by the 

vector 
 

 N 

where 
 

is the vertical component of the earth’s 

angular velocity (total angular velocity multiplied 

by the sine of the latitude). The pressure gradient is 

perpendicular to the velocity, or vice versa, indicat- 

ing that if there is a horizontal pressure gradient, the 

corresponding geostrophic flow will be perpendicu- 

lar to it. This explains why the wind goes anticlock- 

wise round atmospheric depressions in the northern 

hemisphere (clockwise in the southern hemisphere). 

Similar flows occur in the oceans, although the bar- 

riers formed by the continents are impermeable, 

unlike in the atmosphere. 

The condition for a steady flow to be geostroph- 

ic is that the inertia term (u.)u should be small 
compared with the Coriolis term. Thus if U is a typ- 

cg = sin  (sin , 0, − cos  ). 
k 

 

(49) ical velocity magnitude, and L a length scale for the 

flow, the geostrophic approximation will be a good 

Rotating fluids: geostrophic flows 

 

Gravity waves are (mostly) small-scale phenom- 

ena for which the rotation of the earth is unimpor- 

one if  
 

U 2 

L 
 vU, 

tant. That is not the case with ocean currents and the i.e. the Rossby number should be small: 



2 1 

 
 

U 2 

 1. 
v L 

 
(53) 

equations, and it turns out that a solution of the sup- 

posed form exists only if  takes a particular value. 
If that value has negative (or zero) real part, the dis- 

If the Rossby number is large, the earth’s rotation 
can be neglected. Note that the Rossby number is 

always large at the equator, where 
v 
= 0. 

Hydrodynamic instability 

 

A smooth, laminar flow becomes turbulent as a 

result of hydrodynamic instability. Small, random 

perturbations are inevitably present in any real sys- 

tem; if they die away again, the flow is stable, but if 

they grow large, the original flow becomes unrecog- 

nisable and is unstable. Usually, steady flows which 

are slow or weak enough are stable, but they become 

unstable above some critical speed or strength. 

The way to investigate instabilities mathemati- 

cally is to assume that the disturbances to the steady 

state are very small and to linearise the equations 

accordingly. Thus, if the steady state velocity, pres- 

sure and density are given by u
0
(x), p

0 
(x) and 

0 
(x) 

(all functions of position, in general) it is postulated 

that, with the perturbation, we have 
 

u = u0 (x) + u' (x, t), 

p = p0 (x) + p' (x, t), 

 = 0 (x) + ' (x, t) 
 

where u, p and  are small. Then these are sub- 

stituted into the governing equations, and terms 

involving squares or products of small quantities 

are neglected, so the equations are linearised. For 

example, equation (7) which, with (3b), is 
 

 

turbance dies away (or oscillates at constant ampli- 

tude); if it has positive real part it grows exponen- 

tially, indicating instability. If any disturbance of the 

form (55) (i.e. for any values of k and l) grows, then 

the flow is unstable, because in general all distur- 

bances are present, infinitesimally, at first. 

Consider, for example, the case of two fluids of 

different densities, one on top of the other. We have 

seen that the frequency of a disturbance of 

wavenumber k is given by equation (46) if 
2
(the 

density of the lower fluid) is greater than 
1
. 

2However, if  >  ,  as given by (46) is negative. 

But if we replace  by i, 2 is positive,  is real, 

and the oscillation cost can be written as 1/2(et + 

e-t).Thus exponential growth is predicted. Hence the 

interface between a dense fluid and a less dense 

fluid below it is unstable. 

A similar analysis can be performed for a contin- 

uous density distribution, denser on top, caused by a 

temperature gradient, say, in a fluid heated from 

below. In this case the diffusion of heat (and hence 

density) must be allowed for, as well as conserva- 

tion of fluid mass and momentum. For example, a 

horizontal layer of fluid, contained between two 

rigid horizontal planes, distance h apart and main- 

tained at temperatures T
0 

(top) and T
0 

+ ∆T (bot- 

tom) is unstable if the temperature difference ∆T is 

large enough. More precisely, instability occurs if 

a dimensionless parameter called the Rayleigh 

number Ra exceeds the critical value of 1708, 

where 
 

 

gTh3 
 

 

 
+ u. = 0, 

Ra = 
 

(56) 
 

 

becomes 

 

 
 

 

t 

t 

 
 

+ u0 . +u .0  = 0 
 

 

 

 

 
(54) 

Here ,  and  are fluid properties, the coefficient 

of expansion, the kinematic viscosity () and the 

thermal diffusivity respectively. When instability 

occurs, for values of Ra not much greater than 1708, 

the resulting motion is a regular array of usually 
and  the  nonlinear  term  u  is  neglected.  After 

linearisation, it is usually possible to think of the 

disturbance as made up of many modes in which 

the variables depend sinusoidally on one or more 

space coordinates and exponentially on time, e.g. 
 

 

hexagonal cells (fig. 13), with fluid flow up in the 

centre of the cells and down at the edges. Such a 

motion is an example of thermal convection, called 

Rayleigh-Benard convection. When Ra is much 

higher than 1708, the cells themselves become 

unstable, the convection becomes very complicated 

' = f (z)expi(kx + ly) + t 
 

 

(55) and eventually turbulent. 

Rayleigh-Benard convection is an example in 

(cf 42), where i = −1 and we are using complex which instability of the original steady state leads 

number notation. Such terms are substituted into the to another, regular, steady motion which itself goes 
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FIG. 13. – Photograph of convection pattern for Rayleigh-Benard con- 
vection in a layer of fluid heated from below. (Koschmieder, 1974). 

 

 
 

unstable as Ra is increased, and turbulence results 

only after a whole sequence of such instabilities, or 

bifurcations. Other systems do not seem to have 

intermediate stable steady states, but there is a  

rapid transition from laminar to turbulent flow 

when critical conditions are passed. Perhaps the 

most familiar and important of such flows are uni- 

directional (or approximately so) shear flows, such 

as that depicted in fig. 4. Examples are flow in a 

straight pipe and flow in the boundary layer on a 

rigid body or in the shear layer at the edge of the 

recirculation behind it. Flow in a circular pipe of 

diameter D normally becomes turbulent when the 

Reynolds number 
 

Re = 
Du 

, 
 

where  u–  is  the  cross-sectionally  averaged  velocity, 

exceeds a critical value of just over 2000. Flow in a 

boundary layer on a thin flat plate (an approximation 

to a streamlined body) becomes unstable when the 

Reynolds number based on the free stream velocity 

and the boundary layer thickness 
s  

(eq. 36) exceeds 

about 244. Flow in a shear layer is more unstable 
still, associated with the fact that the velocity profile 

contains an inflection point. 

When numbers are put in to formulae such as 

those quoted above, it becomes clear that oceanic 

flows are necessarily turbulent. Hence the existence 

of this course. 
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CONCEPT OF CONTROL VOLUME 

 
. 

CONTINUITY EQUATION Concepts 

The continuity equation is governed from the principle of conservation of 

mass.It states that the mass of fluid flowing through the pipe at the cross-section 

remains constants,if there is no fluid is added or removed from the pipe. 

 

Let us make the mass balance for a fluid element as shown below: (an open-faced cube) 
 
 

 
 

This is the continuity equation for every point in a fluid flow whether steady or unsteady , 
compressible or incompressible. 

For steady, incompressible flow, the density  is constant and the equation simplifies to 

 
For two dimensional incompressible flow this will simplify still further to 

 



 

 

 

1.1.1 ULER'S EQUATION OF MOTION 
 

 
 

 

 

This is known as Euler's equation, giving, in differential form the relationship between p, v, 

 and elevation z, along a streamline for steady flow. 

 

1.1.2 BERNOULLI EQUATION 

Concepts 

 

Bernoulli’s Equation relates velocity, pressure and elevation changes of a fluid in motion. It 

may be stated as follows “ In an ideal incompressible fluid when the flow is steady and 

continuous the sum of pressure energy, kinetic energy and potential energy is constant 

along streamline” 

 

 

 
--> 1 

 

This is the basic from of Bernoulli equation for steady incompressible inviscid flows. It 

may be written for any two points 1 and 2 on the same streamline as 

 

 

 
--> 2 
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The constant of Bernoulli equation, can be named as total head (ho) has different values on 

different streamlines. 

 

 

 
--> 3 

 

The total head may be regarded as the sum of the piezometric head h* = p/g + z and the 

kinetic head v2/2g. 

 

Bernoullie equation is arrived from the following assumptions: 

 

1. Steady flow - common assumption applicable to many flows. 

2. Incompressible flow - acceptable if the flow Mach number is less than 0.3. 

3. Frictionless flow - very restrictive; solid walls introduce friction effects. 

4. Valid for flow along a single streamline; i.e., different streamlines may have 

different ho. 

5. No shaft work - no pump or turbines on the streamline. 

6. No transfer of heat - either added or removed. 

 

Range of validity of the Bernoulli Equation: 

 

Bernoulli equation is valid along any streamline in any steady, inviscid, 

incompressible flow. There are no restrictions on the shape of the streamline or on the 

geometry of the overall flow. The equation is valid for flow in one, two or three dimensions. 

 

Modifications on Bernoulli equation: 

 

Bernoulli equation can be corrected and used in the following form for real cases. 

 

 
APPLICATIONS 

 

1.Venturimeter. 

2.Orificemeter 

3.Pitot Tube 
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1.2 MOMENTUM EQUATION 
 

Net force acting on fluid in the direction of x=Rate of change of momentum in x 

direction 

=Mass per sec× Change in 

velocity p1A1-p2A2×cosθ-

Fx=ρQ(v2cosθ-v1) 

Fx=ρQ(v1-v2cosθ)-p2A2cosθ+p1A1 
 

Similarlt,the momentum in y-direction is 
 

-p2A2sinθ+Fy=ρQ(v2sinθ-0) 
 

Fy=ρQv2sinθ+p2A2 sinθ 

Resultant force acting on the bend, 

Fr=√Fx²+Fy² 

GLOSSARY 

Quantity Unit 

Mass in Kilogram Kg 

Length in Meter M 

Time in Second s or as sec 

Temperature in Kelvin K 

Mole gmol or simply as mol 

 
Derived quantities: 

Quantity Unit 

Force in Newton (1 N = 1 kg.m/s2) N 

Pressure in Pascal (1 Pa = 1 N/m2) N/m2 

Work, energy in Joule ( 1 J = 1 N.m) J 

Power in Watt (1 W = 1 J/s) W 
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REVIEW QUESTIONS 
 

PART A 
 

1. Define compressibility of a fluid. 

2. What is viscosity? What is the cause of it in liquids and gases. 

3. What is the effect of temperature on viscosity of water and that of air? 

4. Explain about capillarity. 

5. Distinguish between fluid and solid. 

6. Define (a) Dynamic viscosity and (b) Kinematic viscosity. 

7. Define (a) Surface tension (b) Capillarity 

8. What is a real fluid? Give examples. 

9. Define cavitation. 

10. Define Viscosity 

11. Define the following fluid properties: 

12. Density, weight density, specific volume and specific gravity of a fluid. 

 

PART B 

1. (a) What are the different types fluids? Explain each type. (b) Discuss the 

thermodynamic properties of fluids 

 

2. (a) One litter of crude oil weighs 9.6 N. Calculate its Specific weight, density and 

specific weight. 

(b) The Velocity Distribution for flow over a flat plate is given by u=(2/3)y-y2, Where u 

is the point velocity in meter per second at a distance y meter above the plate. 

Determine the shear stress at y=0 and y=15 cm. Assume dynamic viscosity as 8.63 

poises 

 

3. (a) A plate, 0.025 mm distant from a fixed plate, moves at 50 cm/s and requires a force 

of 1.471 N/ m2 to maintain this speed. Determine the fluid viscosity between plates in 

the poise. 

(b) Determine the intensity of shear of an oil having viscosity =1.2 poise and is used for 

lubrication in the clearance between a 10 cm diameter shaft and its journal bearing. The 

clearance is 1.0 mm and Shaft rotates at 200 r.p.m 

 

4. (a) Two plates are placed at a distance of 0.15mm apart. The lower plate is fixed while 

the upper plate having surface area 1.0 m2 is pulled at 0.3 nm/s. Find the force and 

power required to maintain this speed, if the fluid separating them is having viscosity 

1.5 poise. 

(b) An oil film of thickness 1.5 mm is used for lubrication between a square plate of 

size 0.9m *0.9m and an inclined plane having an angle of inclination 200 . . The weight 

of square plate is 392.4 N and its slides down the plane with a uniform velocity of 0.2 

m/s. find the dynamic viscosity of the oil. 
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5. (a) Assuming the bulk modulus of elasticity of water is 2.07 x10 6 kN/m2 at standard 

atmospheric condition determine the increase of pressure necessary to produce one 

percent reduction in volume at the same temperature 

(b) Calculate the capillary rise in glass tube pf 3mm diameter when immersed in 

mercury, take the surface tension and angle of contact of mercury as 0.52 N/m and 1300 

respectively. Also determine the minimum size of the glass tube, if it is immersed in 

water, given that the surface tension of water is 0.0725 N/m and Capillary rise in tube is 

not exceed 0.5mm 

 

6. (a) Calculate the pressure exerted by 5kg of nitrogen gas at a temperature of 100 C. 

Assume ideal gas law is applicable. 

(b) Calculate the capillary effect in glass tube 5mm diameter, when immersed in (1) 

water and (2) mercury. The surface tension of water and mercury in contact with air are 

0.0725 N/m and 0.51 N/m respectively. The angle of contact of mercury of mercury is 

130. 

 

7. (a) Explain all three Simple manometers with neat sketch. 

(b) Explain Differential manometer With Neat sketch. 

 

8. A U-tube differential manometer is connected two pressure pipes A and B.Pipe A 

contains Carbon tetrachloride having a specific gravity 1.594 under a pressure of 11.772 

N/ Cm2 . The pipe A lies 2.5 m above pipe B. Find the difference of pressure measured 

by mercury as a fluid filling U-tube 
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UNIT -II FLOW THROUGH CIRCULAR CONDUITS 

PRE REQUEST DISCUSSION 

Unit II has an in dept dealing of laminar flow through pipes, boundary layer 

concept, hydraulic and energy gradient, friction factor, minor losses, and flow through pipes 

in series and parallel. 

 

Boundary layer is the region near a solid where the fluid motion is affected by the 

solid boundary. In the bulk of the fluid the flow is usually governed by the theory of ideal 

fluids. By contrast, viscosity is important in the boundary layer. The division of the problem 

of flow past an solid object into these two parts, as suggested by Prandtl in 1904 has proved 

to be of fundamental importance in fluid mechanics. 

 

This concept of hydraulic gradient line and total energy line is very useful in the 

study of flow This concept of hydraulic gradient line and total energy line is very useful in 

the study of flow of fluids through pipes. f fluids through pipes. 

 

2.1 HYDRAULIC GRADIENT AND TOTAL ENERGY LINE 

1.Hydraulic Gradient Line 

It is defined as the line which  gives the  sum  of pressure head (p/w)  

and datum head (z) of a flowing fluid in a pipe with respect to some reference line or it is 

the line which is obtained by joining the top of all vertical ordinates, showing the pressure 

head (p/w) of a flowing  fluid  in  a  pipe  from  the  centre  of  the  pipe.  It is briefly  

written as H.G.L (Hydraulic Gradient Line). 

 
2.Total Energy Line 

 

It is defined as the line which gives the sum of pressure head, datum head and 

kinetic head of a flowing fluid in a pipe with respect to some reference line. It is also 

defined as the line which is  obtained  by joining  the  tops  of all  vertical  ordinates 

showing the sum of pressure head and kinetic head from the centre of the pipe. It is briefly 

written as T.E.L (Total Energy Line). 

 

2.2 BOUNDARY LAYER 

Concepts 

The variation of velocity takes place in a narrow region in the vicinity of solid boundary. 

The fluid layer in the vicinity of the solid boundary where the effects of fluid friction i.e., 

variation of velocity are predominant is known as the boundary layer. 
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2.2.1 FLOW OF VISCOUS FLUID THROUGH CIRCULAR PIPE 

 

For the flow of viscous fluid through circular pipe, the velocity distribution across a 

section, the ratio of maximum velocity to average velocity, the shear stress distribution and 

drop of pressure fora given length is to be determined. The flow through circular pipe will 

be viscous or laminar, if the Reynold’s number is less than 2000. 

 

2.2.2 DEVELOPMENT OF LAMINAR AND TURBULENT FLOWS IN CIRCULAR 

PIPES 

1. Laminar Boundary Layer 
 

At the initial stage i.e, near the surface of the leading edge of the plate, the thickness of 

boundary layer is the small and the flow in the boundary layer is laminar though the main 

stream flows turbulent. So, the layer of the fluid is said to be laminar boundary layer. 

2. Turbulent Boundary Layer 
 

The thickness boundary layer increases with distance from the leading edge in the 

down-stream direction. Due to increases in thickness of boundary layer, the laminar 

boundary layer becomes unstable and the motion of the fluid is disturbed. It leads to a 

transition from laminar to turbulent boundary layer. 

2.2.3 BOUNDARY LAYER GROWTH OVER A FLAT PLATE 
 

Consider a continuous flow of fluid along the surface of a thin flat plate with its sharp 

leading edge set parallel to the flow direction as shown in figure 2.7.The fluid approaches 

the plate with uniform velocity U known as free stream velocity at the leading edge. As 

soon as the fluid comes in contact the leading edge of the plate,its velocity is reduced to 

zero as the fluid particles adhere to the plate boundary thereby satisfying no-slip condition. 

2.3 FLOW THROUGH CIRCULAR PIPES-HAGEN POISEUILLE’S EQUATION 
 

Due to viscosity of the flowing fluid in a laminar flow,some losses of head take place.The 

equation which gives us the value of loss of head due to viscosity in a laminar flow is 

known as Hagen-Poiseuille’s law. 
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p1-p2=32μUL/D² 
 

=128μQL/πD4 
 

This equation is called as Hargen-Poiseuille equation for laminar flow in the circular pipes. 
 

2.4 DARCY’S EQUATION FOR LOSS OF HEAD DUE TO FRICTION IN PIPE 
 

A pipe is a closed conduit through which the fluid flows under pressure.When the 

fluid flows through the piping system,some of the potential energy is lost due to friction. 

hƒ=4ƒLv²/2gD 
 

2.5 MOODY’S DIAGRAM 
 

Moody’s diagram is plotted between various values of friction factor(ƒ),Reynolds 

number(Re) and relative roughness(R/K) as shown in figure 2.6.For any turbulent flow 

problem,the values of friction factor(ƒ) can therefore be determined from Moody’s 

diagram,if the numerical values of R/K for the pipe and Rе of flow are known. 

The Moody’s diagram has plotted from the equation 

1/√ ƒ-2.0 log10(R/K)=1.74-2.0 log10[1+18.7/(R/K/Re/ ƒ)] 
 

Where,R/K=relative roughness 
 

ƒ=friction factor and Re=Reynolds number. 
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2.6 CLASSIFICATION OF BOUNDARY LAYER THICKNESS 
 

1. Displacements thickness(δ*) 
 

2. Momentum thickness(θ) 
 

3. Energy thickness(δe) 
 

2.7 BOUNDARY LAYER SEPARATION 
 

The boundary layer leaves the surface and gets separated from it. This phenomenon is 

known as boundary layer separation. 

2.8 LOSSESS IN PIPES 
 

When a fluid flowing through a pipe, certain resistance is offered to the flowing fluid, 

it results in causing a loss of energy. 

The loss is classified as: 
 

1. Major losses 

2. Minor losses 
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2.8.1 Major Losses in Pipe Flow 
 

The major loss of energy is caused by friction in pipe. It may be computed by Darcy- 

weisbach equation. 

Minor Losses in Pipe Flow 
 

The loss of energy caused on account of the change in velocity of flowing fluid is called 

minor loss of energy. 

 

 

2.9 FLOW THOUGH PIPES IN SERIES AND PARALLEL 

Pipes in Series 

The pipes of different diamers and lengths which are connected with one 

another to form a single pipeline. 

Pipes in Parallel 
 

When a main pipeline divides into two or more parallel pipes which 

again join together to form a single pipe and continuous as a main line 
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GLOSSARY 

HGL –Hydraulic gradient line 

TEL – Total energy line. 

 

Applications 

 

1. To find out friction factor in the flow through pipe. 

2. To find out the losses in losses in the pipes. 
 

REVIEW QUESTIONS 
 

PART A 
 

1. Mention the general characteristics of laminar flow. 

2. Write down the Navier-stokes equation. 

3. Write down the Hagen-Poiseuille equation for laminar flow. 

4. What are energy lines and hydraulic gradient lines? 

5. What is a siphon? What is its application? 

6. What is hydraulic Mean Depth or hydraulic radius? 

7. Write the Darcy weishbach and Chezy’s formulas. 

8. Where the Darcy weishbach and Chezy’s formulas are used? 

9. What are the losses experienced by fluid when it is passing 

through a pipe? 

10. Write the equation of loss of energy due to sudden enlargement. 

11.What do you mean by flow through parallel pipes? 

12.What is boundary layer? 
 

PART-B 

1. (a) Derive an expression for the velocity distribution for viscous flow through a circular 

pipe. 

(b) A main pipe divides into two parallel pipes, which again forms one pipe. The length 

and diameter for the first parallel pipe are 2000m and 1m respectively, while the length 

and diameter of second parallel pipe are 2000 and 0.8 m respectively. Find the rate of 

flow in each parallel pipe, if total flow in the main is 3 m³/s. The coefficient of friction 

for each parallel pipe is same and equal to 0.005. 

 

2. (a)Two pipes of 15 cm and 30 cm diameters are laid in parallel to pass a total discharge 

of 100 liters/ second. Each pipe is 250 m long. Determine discharge through each pipe. 

Now these pipes are connected in series to connect two tanks 500 m apart, to carry same 

total discharge. Determine water level difference between the tanks. Neglect minor 

losses in both cases, f=0.02 fn both pipes. 

(b) A pipe line carrying oil of specific gravity 0.85, changes in diameter from 350 mm 

at position 1 to 550 mm diameter to a position 2, which is at 6 m at a higher level. If the 

pressure at position 1 and 2 are taken as 20 N/cm2 and 15 N/ cm2 respectively and 

discharge through the pipe is 0.2 m³/s. determine the loss of head. 
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3. Obtain an expression for Hagen- Poisulle flow. Deduce the condition of maximum 

velocity. 

 

4. A flat plate 1.5 m X 1.5 m moves at 50 km / h in a stationary air density 1.15 kg/ m³. If 

The coefficient of drag and lift are 0.15 and 0.75 respectively, determine (i) the lift force 

(ii) the drag force (iii) the resultant force and (iv) the power required to set the plate in 

motion. 

 

5 (a). The rate of flow of water through a horizontal pipe is 0.3 m³/s. The diameter of the 

pipe is suddenly enlarged from 25 cm to 50 cm. The pressure intensity in the smaller 

pipe is 14N/m². 

Determine (i) Loss of head due to sudden enlargement. (ii) Pressure intensity in the 

large 

pipe and (iii) Power lost due to enlargement. 

(b) Water is flowing through a tapering pipe of length 200 m having diameters 500 mm 

at the upper end and 250 mm at the lower end, the pipe has a slope of 1 in 40. The rate 

of flow through the pipe is 250 lit/ sec. the pressure at the lower end and the upper end 

are 20 N/cm² and 10 N/cm² respectively. Find the loss of head and direction of flow. 

 

6.  A horizontal pipe of 400 mm diameter is suddenly contracted to a diameter of 200 mm. 

The pressure intensities in the large and small pipe is given as 15 N/cm² and 10 N/cm² 

respectively. Find the loss of head due to contraction, if Cc=0.62, determine also the 

rate of flow of water. 

 

7. Determine the length of an equivalent pipe of diameter 20 cm and friction factor 0.02 

for a given pipe system discharging 0.1m³/s. The pipe system consists of the following: 

(i) A 10 m line of 20 cm dia with f=0.03 

(ii) Three 90º bend, k=0.5 for each 

(iii) Two sudden expansion of diameter 20 to 30 cm 

(iv) A 15 m line of 30 cm diameter with f=0.025 and 

(v) A global valve, fully open, k=10. 
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UNIT 4 DIMENSIONAL ANALYSIS 

DIMENSIONAL ANALYSIS 

PRE REQUEST DISCUSSION 

 
Unit III deals with dimensional analysis,models and similitude,and application of 

dimensionless parameters. 

 

Many important engineering problems cannot be solved completely by theoretical or 

mathematical methods. Problems of this type are especially common in fluid-flow, heat- 

flow, and diffusional operations. One method of attacking a problem for which no 

mathematical equation can be derived is that of empirical experimentations. 

 

For example, the pressure loss from friction in a long, round, straight, smooth pipe 

depends on all these variables: the length and diameter of the pipe, the flow rate of the 

liquid, and the density and viscosity of the liquid. If any one of these variables is changed, 

the pressure drop also changes. The empirical method of obtaining an equation relating 

these factors to pressure drop requires that the effect of each separate variable be 

determined in turn by systematically varying that variable while keep all others constant. 

The procedure is laborious, and is difficult to organize or correlate the results so obtained 

into a useful relationship for calculations. 

 

There exists a method intermediate between formal mathematical development and a 

completely empirical study. It is based on the fact that if a theoretical equation does exist 

among the variables affecting a physical process, that equation must be dimensionally 

homogeneous. Because of this requirement it is possible to group many factors into a 

smaller number of dimensionless groups of variables. The groups themselves rather than the 

separate factors appear in the final equation. 

 

Concepts 

 
Dimensional analysis drastically simplifies the task of fitting experimental data to 

design equations where a completely mathematical treatment is not possible; it is also useful 

in checking the consistency of the units in equations, in converting units, and in the scale-up 

of data obtained in physical models to predict the performance of full-scale model. The 

method is based on the concept of dimension and the use of dimensional formulas. 

 

Dimensional analysis does not yield a numerical equation, and experiment is 

required to complete the solution of the problem. The result of a dimensional analysis is 

valuable in pointing a way to correlations of experimental data suitable for engineering use. 



 

 

 

3.1 METHODS OF DIMENSIONAL ANALYSIS 

 
If the number of variables involved in a physical phenomenon are known, then the 

relation among the variables can be determined by the following two methods. 

 

1. Rayleigh’s method 

 
2. Buckingham’s π theorem 

 
 

3.1.1 Rayleigh’s method 

This method is used for determining the expression for a variable which depends upon 

maximum three or  four  variables  only.  If  the  number  of  independent  variables 

becomes more than four then it is very difficult to find the expression for the dependent 

variable. 

 

3.1.2 Buckingham’s π theorem. 

If there are n variables (independent and dependent variables) in  a  physical 

phenomenon and if these variables contain m fundamental dimensions (M, L, T), then the 

variables are arranged into (n-m) dimensionless numbers. Each term is called Buckingham’s 

π theorem. 

 

Applications 

 

❖ It is used to justify the dependency of one variable with the other. 

❖ Usually this type of situation occurs in structures and hydraulic machines. 

❖ To solve this problem efficiently, an excellent tool is identified called dimensional 

analysis. 
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3.2 SMILITUDE –TYPES OF SIMILARITIES 

 

Similitude is defined as the similarity between the model and its prototype in 

every respect, which means that the model and prototype are completely similar. Three 

types of similarities must exist between the model and prototype. 

 

Concepts 

 

Whenever it is necessary to perform tests on a model to obtain information that 

cannot be obtained by analytical means alone, the rules of similitude must be applied. 

Similitude is the theory and art of predicting prototype performance from model 

observations 

 

1. Geometric similarity refers to linear dimensions. Two vessels of different sizes are 

geometrically similar if the ratios of the corresponding dimensions on the two scales are the 

same. If photographs of two vessels are completely super-impossible, they are 

geometrically similar. 

 

2. Kinematic similarity refers to motion and requires geometric similarity and the same 

ratio of velocities for the corresponding positions in the vessels. 

 

3. Dynamic similarity concerns forces and requires all force ratios for corresponding 

positions to be equal in kinematically similar vessels. 

 

SIGNIFICANCE 

 

The requirement for similitude of flow between model and prototype is that the 

significant dimensionless parameters must be equal for model and prototype 

 

3.3 DIMENSIONLESS PARAMETERS 

 

Since the inertia force is always present in a fluid flow, its ratio with each of the 

other forces provides a dimensionless number. 

 

1. Reynold’s number 

2. Froud’s number 

3. Euler’s number 

4. Weber’s number 

5. Mach’s number 

 

Applications of dimensionless parameters 

 

1. Reynold’s model law 

2. Froud’s model law 

3. Euler’s model law 

4. Weber’s model law 

5. Mach’s model law 



Concepts 
 

 

 

Dimensionless 

Number 
Symbol Formula Numerator Denominator Importance 

 
Reynolds 

number 

 

NRe 

 
Dv/ 

 
Inertial 

force 

 

Viscous force 

Fluid flow 

involving 

viscous and 

inertial forces 

Froude 

number 
NFr u2/gD 

Inertial 

force 

Gravitational 

force 

Fluid flow with 

free surface 

Weber number NWe u2D/ 
Inertial 

force 
Surface force 

Fluid flow with 

interfacial forces 

Mach number NMa u/c 
Local 

velocity 
Sonic velocity 

Gas flow at high 

velocity 

Drag 

coefficient 
CD FD/(u2/2) 

Total drag 

force 
Inertial force 

Flow around 

solid bodies 

Friction factor f w/(u2/2) Shear force Inertial force 
Flow though 

closed conduits 

 
Pressure 

coefficient 

 
CP 

 
p/(u2/2) 

 
Pressure 

force 

 

Inertial force 

Flow though 

closed conduits. 

Pressure drop 

estimation 
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ce i 

Generally, type 1 can be solved directly, where as types 2 and 3 require simple trial and 

error. 

 

Three fundamental problems which are commonly encountered in pipe-flow calculations: 

Constants: rho, mu, g, L 

 

1. Given D, and v or Q, compute the pressure drop. (pressure-drop problem) 

2. Given D, delP, compute velocity or flow rate (flow-rate problem) 

3. Given Q, delP, compute the diameter D of the pipe (sizing problem) 

 

REVIEW QUESTIONS 

 

1. Define Dimensional Analysis 

2. What you meant by fundamental and derived units? 

3. Define dimensionally homogeneous equation. 

4. What are the methods of dimensional analysis? 

5. State Buckingham’s Π theorem 

6. What you meant by Repeating variables 

7. What is dimensionless number? 

8. Check the dimensional homogeneity for the equation V=u+at 
 

PART-B 

 

1) Check the dimensional homogeneity for the equation V = u + ft. 

 
2) Determine the dimension of the following quantities: 

i) Discharge 

ii) Kinematic viscosity 

iii) Force and 

iv) Specific weight. 

 
3) Find an expression for the drag for  on smooth sphere of d ameter D, moving with 

uniform velocity v, in fluid density and dynamic viscosity . 

 
4) Efficiency of a fan depends on the density  , the dynamic viscosity of the fluid , 

the angular velocity , diameter D of the rotor and the discharge Q. Express in 

terms of dimensional parameters. 

 
5) The resistance force R of a supersonic plane during flight can be considered as 

dependent upon the length of the aircraftl, velocity v, air viscosity , air density 

and bulk modulus of air K. Express the functional relationship between these 

variables and the resisting force. 

 
6) A partially submerged body is towed in water. The resistance R to its motion 

depends on the density , the viscosity of water, length l of the body, velocity v of 
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the body and acceleration due to gravityg. Show that the resistance to motion can be 

expressed in the form 

R = L2v2   , . 

 
7) The pressure drop ∆p in a pipe of diameter D and length l depends on the 

density and viscosity of 

fluid flowing, mean velocity v of flow and average height of protuberance t. 

Show that the pressure drop can be expressed in the form p = 

v2 , , . 

 
8) Find the expression for the drag force on smoot sphere of diameter D moving with 

uniform velocity v in fluid density and dynam c viscosity . 

 
9) The efficiency of a fan depends on the density , the dynamic viscosity , ang r 

velocity , diameter D of the motor and the dis arge Q. Express the efficiency 

in terms of dimensional parameters. 

 
10) The pressure difference p in a pip   of diameter D  d length l due to turbulent flow 

depends on the velocity v, viscosity  , density and oughness K. Using 

Buckingham’s -theorem, obtain a  expression for p. 
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UNIT-IV PUMPS 
 

PRE REQUEST DISCUSSION 
 

Basic concepts of rot dynamic machines, velocity triangles for radial flow and axial 

flow machines, centrifugal pumps, turbines and Positive displacement pumps and rotary 

pumps its performance curves are discussed in Unit IV. 

The liquids used in the chemical industries differ considerably in physical and chemical 

properties. And it has been necessary to develop a wide variety of pumping equipment. 

 

The two main forms are the positive displacement type and centrifugal pumps. 

 

the former, the volume of liquid delivered is directly related to the displacement of 

the piston and therefore increases directly with speed and is not appreciably influenced by 

the pressure. In this group are the reciprocating piston pump and the rotary gear pump, both 

of which are commonly used for delivery against high pressures and where nearly constant 

delivery rates are required. 

 

The centrifugal type depends on giving the liquid a high kinetic energy which is then 

converted as efficiently as possible into pressure energy. 

 
4.1 HEAD AND EFFICIANCES 

1. Gross head 

2. Effective or Net head 

3. Water and Bucket power 

4. Hydraulic efficiency 

5. Mechanical efficiency 

6. Volume efficiency 

7. Overall efficiency 

Concepts 

 

A pump is a device which converts the mechanical energy supplied into hydraulic energy by 

lifting water to higher levels. 

 

4.2 CENTRIFUGAL PUMP 

Working principle 

If the mechanical energy is converted into pressure energy by means of centrifugal 

force acting 

on the fluid, the hydraulic machine is called  centrifugal pump. The centrifugal pump   

acts as a reversed of an inward radial flow reaction turbine 

 

4.2.3 Performance Characteristics of Pumps 

 

The fluid quantities involved in all hydraulic machines are the flow rate (Q) and the 

head (H), whereas the mechanical quantities associated with the machine itself are the 

power (P), speed (N), size (D) and efficiency ( ). Although they are of equal importance, 

the emphasis placed on certain of these quantities is different for different pumps. The 
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output of a pump running at a given speed is the flow rate delivered by it and the head 

developed. Thus, a plot of head and flow rate at a given speed forms the fundamental 

performance characteristic of a pump. In order to achieve this performance, a power input is 

required which involves efficiency of energy transfer. Thus, it is useful to plot also the 

power P and the efficiency  against Q. 

Over all efficiency of a pump ( ) = Fluid power output / Power input to the shaft = gHQ / 

P 
Type number or Specific speed of pump, nS = NQ1/2 / (gH)3/4 (it is a dimensionless number) 

Centrifugal pump Performance 

In the volute of the centrifugal pump, the cross section of the liquid path is greater than in 

the impeller, and in an ideal frictionless pump the drop from the velocity V to the lower 

velocity is converted according to Bernoulli's equation, to an increased pressure. This is the 

source of the discharge pressure of a centrifugal pump. 

 

If the speed of the impeller is increased from N1 to N2 rpm, the flow rate will increase from 

Q1 to Q2 as per the given formula: 

 
The head developed(H) will be proportional to the square of the quantity discharged, so that 

 
The power consumed(W) will be the product of H and Q, and, therefore 

 
 

These relationships, however, form only the roughest guide to the performance of 

centrifugal pumps. 

 

4.2.4 Characteristic curves 

 

Pump action and the performance of a pump are defined interms of their 

characteristic curves. These curves correlate the capacity of the pump in unit volume per 

unit time versus discharge or differential pressures. These curves usually supplied by pump 

manufacturers are for water only. 

 

These curves usually shows the following relationships (for centrifugal pump). 

 

• A plot of capacity versus differential head. The differential head is the difference in 

pressure between the suction and discharge. 

• The pump efficiency as a percentage versus capacity. 

• The break horsepower of the pump versus capacity. 

• The net poisitive head required by the pump versus capacity. The required NPSH for 

the pump is a characteristic determined by the manufacturer. 
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Centrifugal pumps are usually rated on the basis of head and capacity at the point of 

maximum efficiency. 

 

4.3 RECIPROCATING PUMPS 

Working principle 

If the mechanical energy is converted into hydraulic energy (or pressure energy) by 

sucking 

the liquid into a cylinder in which a piston is reciprocating (moving backwards and 

forwards), which 

exerts the thrust on the liquid and increases its hydraulic energy (pressure energy), the pump 

is known as reciprocating pump 

 

Main ports of a reciprocating pump 

 

1.A cylinder with a piston, piston rod, connecting rod and a crank, 2. Suction pipe 

3.Delivery pipe, 4. Suction valve and 5.Delivery valve. 

Slip of Reciprocating Pump 

 

Slip of a reciprocating pump is defined as the difference between the theoretical discharge 

and the actual discharge of the pump. 

 
4.3.1Characteristic Curves Of Reciprocatring Pumps 

 

1. According to the water being on contact with one side or both sides of the piston 

(i.) Single acting pump (ii.) Double-acting pump 

 

2. According to the number of cylinders provided 

(i.) Single acting pump (ii.) Double-acting pump (iii.) Triple-acting pump 

 

Reciprocating pumps Vs centrifugal pumps 

 

The advantages of reciprocating pumps in general over centrifugal pumps may be 

summarized as follows: 

 

1. They can be designed for higher heads than centrifugal pumps. 

2. They are not subject to air binding, and the suction may be under a pressure less 

than atmospheric without necessitating special devices for priming. 

3. They are more flexible in operation than centrifugal pumps. 

4. They operate at nearly constant efficiency over a wide range of flow rates. 

 

The advantages of centrifugal pumps over reciprocating pumps are: 

 

1. The simplest centrifugal pumps are cheaper than the simplest reciprocating pumps. 

2. Centrifugal pumps deliver liquid at uniform pressure without shocks or pulsations. 
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3. They can be directly connected to motor derive without the use of gears or belts. 

4. Valves in the discharge line may be completely closed without injuring them. 

5. They can handle liquids with large amounts of solids in suspension. 
 

4.4 Rotary Pumps 

 
The rotary pump is good for handling viscous liquids, nut because of the close 

tolerances needed, it can not be manufactured large enough to compete with centrifugal 

pumps for coping with very high flow rates. 

Rotary pumps are available in a variety of configurations. 

• Double lobe pump 

• Trible lobe pumps 

• Gear pump 

• Gear Pumps 

• 

• Spur Gear or External-gear pump 
 

 

 

 

External-gear pump (called as gear pump) consists essentially of two 

intermeshing gears which are identical and which are surrounded by a closely fitting 

casing. One of the gears is driven directly by the prime mover while the other is 

allowed to rotate freely. The fluid enters the spaces between the teeth and the casing 

and moves with the teeth along the outer periphery until it reaches the outlet where it 

is expelled from the pump. 

 

External-gear pumps are used for flow rates up to about 400 m3/hr working 

against pressures as high as 170 atm. The volumetric efficiency of gear pumps is in 

the order of 96 percent at pressures of about 40 atm but decreases as the pressure 

rises. 
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4.4.1 Internal-gear Pump 
 

 

The above figure shows the operation of a internal gear pump. In the 

internal-gear pump a spur gear, or pinion, meshes with a ring gear with internal 

teeth. Both gears are inside the casing. The ring gear is coaxial with the inside of the 

casing, but the pinion, which is externally driven, is mounted eccentrically with 

respect to the center of the casing. A stationary metal crescent fills the space 

between the two gears. Liquid is carried from inlet to discharge by both gears, in the 

spaces between the gear teeth and the crescent. 

 

4.4.2 Lobe pumps 

 

In principle the lobe pump is similar to the external gear pump; liquid flows into the 

region created as the counter-rotating lobes unmesh. Displacement volumes are formed 

between the surfaces of each lobe and the casing, and the liquid is displaced by meshing of 

the lobes. Relatively large displacement volumes enable large solids (nonabrasive) to be 

handled. They also tend to keep liquid velocities and shear low, making the pump type 

suitable for high viscosity, shear-sensitive liquids. 

 

Two lobe pump Three lobe pump 
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The choice of two or three lobe rotors depends upon solids size, liquid viscosity, and 

tolerance of flow pulsation. Two lobe handles larger solids and high viscosity but pulsates 

more. Larger lobe pumps cost 4-5 times a centrifugal pump of equal flow and head. 

 

4.3 Selection of Pumps 

 
The following factors influence the choice of pump for a particular operation: 

 

1. The quantity of liquid to be handled: This primarily affects the size of the pump and 

determines whether it is desirable to use a number of pumps in parallel. 

2. The head against which the liquid is to be pumped. This will be determined by the 

difference in pressure, the vertical height of the downstream and upstream reservoirs 

and by the frictional losses which occur in the delivery line. The suitability of a 

centrifugal pump and the number of stages required will largely be determined by 

this factor. 

3. The nature of the liquid to be pumped. For a given throughput, the viscosity largely 

determines the frictional losses and hence the power required. The corrosive nature 

will determine the material of construction both for the pump and the packing. With 

suspensions, the clearance in the pump must be large compared with the size of the 

particles. 

4. The nature of power supply. If the pump is to be driven by an electric motor or 

internal combustion engine, a high-speed centrifugal or rotary pump will be 

preferred as it can be coupled directly to the motor. 

5. If the pump is used only intermittently, corrosion troubles are more likely than with 

continuous working. 

 

Applications 

 

The handling of liquids which are particularly corrosive or contain abrasive solids in 

suspension, compressed air is used as the motive force instead of a mechanical pump. 

 

REVIEW QUESTIONS 

 

PART A 

 

1. What is meant by Pump? 

2. Mention main components of Centrifugal pump. 

3. What is meant by Priming? 

4. Define Manometric head. 

5. Define Manometric efficiency 

6. Define Mechanical efficiency. 

7. Define overall efficiency. 

8. Give the range of specific speed for low, medium, high speed 

radial flow. 

9. Define speed ratio, flow ratio. 

10. Mention main components of Reciprocating pump. 

11. Define Slip of reciprocating pump. When the negative slip does 

occur? 
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PART-B 

 

1. Write short notes on the following (1) Cavitations in hydraulic machines their causes, 

effects and remedies. (2) Type of rotary pumps. 

 
2. Draw a neat sketch of centrifugal pump and explain the working principle of the 

centrifugal pump. 

 
3. Draw a neat sketch of Reciprocating pump and explain the working principle of single 

acing and double acting Reciprocating pump. 

 
4. A radial flow impeller has a diameter 25 cm and width 7.5 cm at exit. It delivers 120 

liters of water per second against a head of 24 m at 1440 rpm. Assuming the vanes block 

the flow area by 5% and hydraulic efficiency of 0.8, estimate the vane angle at exit. 

Also calculate the torque exerted on the driving shaft if the mechanical efficiency is 

95%. 

 
5. Find the power required to drive a centrifugal pump which to drive a centrifugal pump 

which delivers 0.04 m3 /s of water to a height of 20 m through a 15 cm diameter pipe 

and 100 m long. The over all efficiency of the pump is 70% and coefficient of friction is 

0.15 in the formula hf=4flv2/2gd. 

 
6. A Centrifugal pump having outer diameter equal to 2 times the inner diameter and 

running at 1200 rpm works against a total head of 75 m. The Velocity of flow through 

the impeller is constant and equal to 3 m/s. The vanes are set back at an angle of 30º at 

out let. If the outer diameter of impeller is 600 mm and width at outlet is 50 mm. 

Determine (i) Vane angle at inlet (ii) Work done per second on impeller 

(iii) Manometric efficiency. 

 
7. The diameter and stroke of a single acting reciprocating pump are 200 mm and 400 mm 

respectively, the pump runs at 60 rpm and lifts 12 liters of water per second through a 

height of 25 m. The delivery pipe is 20m long and 150mm in diameter. Find (i) 

Theoretical power required to run the pump. (ii) Percentage of slip. (iii) Acceleration 

head at the beginning and middle of the delivery stroke. 



40 V.P.KRISHNAMURTHY – AP/MECH 2015 - 16 

 

 

UNIT V TURBINES 
 

PRE REQUEST DISCUSSION 
 

Hydraulic Machines are defined as those  machines  which  convert  either  

hydraulic energy (energy  possessed  by  water)  into  mechanical  energy  (which  is  

further converted into electrical energy)  or  mechanical  energy into  hydraulic  energy.  

The hydraulic machines, which convert the hydraulic energy into mechanical energy, are 

called turbines. 

 
Turbines are defined as the hydraulic machines which convert hydraulic energy into 

mechanical energy. This mechanical energy is used in running an electric generator which is 

directly coupled to the shaft of the turbine.  Thus  the  mechanical  energy  is  converted  

into electrical energy. The electric power which is obtained from the hydraulic energy 

(energy of water) is known as Hydro- electro power. 

In our subject point of view, the following turbines are important and will be 

discussed one by one. 

1. Pelton wheel 
 

2. Francis turbine 
 

3. Kaplan turbine 
 

Concept 
 

Turbines are defined as the hydraulic machines which convert hydraulic energy into 

mechanical energy. This mechanical energy is used in running an electric generator which is 

directly coupled to the shaft of the turbine 

FLUID TYPES OF TURBINE 

 

Water Hydraulic Turbine 

Steam Steam Turbine 

Froen Vapour Turbine 

Gas or air Gas Turbine 

Wind Wind Mills 

 
 

5.1 CLASSIFICATION OF HYDRAULIC TURBINES 
 

1. According to the action of the water flowing 
 

2. According to the main direction of flow of water 
 

3. According to the head and quality of water required 
 

4. According to the specific speed 
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5.2 HEAD AND EFFICIANCES OF PELTON WHEEL 
 

1. Gross head 

2. Effective or Net head 

3. Water and Bucket power 

4. Hydraulic efficiency 

5. Mechanical efficiency 

6. Volume efficiency 

7. Overall efficiency 

5.3 IMPULSE TURBINE 
 

In an impulse turbine, all the energy available by water is converted into kinetic 

energy by passing a nozzle. The high velocity jet coming out of the nozzle then impinges on 

a series of buckets fixed around the rim of a wheel. 

5.4 Tangential Flow Turbine, Radial And Axial Turbines 
 

1. Tangential flow turbine 
 

In a tangential flow turbine, water flows along the tangent to the path of runner. E.g. Pelton 

wheel 

2. Radial flow turbine 
 

In a radial flow turbine, water flows along the radial direction and mainly in the plane 

normal to the axis of rotation, as it passes through the runner. It may be either inward radial 

flow type or outward radial flow type. 

3. Axial flow turbine 
 

In axial flow turbines, water flows parallel to the axis of the turbine shaft. E.g. kaplan 

turbine 

4. Mixed flow turbine 
 

In a mixed flow turbine, the water enters the blades radiallsy and comes out axially and 

parallel to the turbine shaft .E.g. Modern Francis turbine. 

In our subject point of view, the following turbines are important and will be discussed one 

by one 

1. Pelton wheel 

2. Francis turbine 

3. Kaplan turbine 
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5.5 PELTON WHEEL OR PELTON TURBINE 
 

The Pelton wheel is a tangential flow impulse turbine and now in common use. 

Leston A Pelton, an American engineer during 1880,develops this  turbines. A pelton  

wheel consists of following main parts. 

 

 

 

 

 

 

 
1. Penstock 

 

2. Spear and nozzle 
 

3. Runner with buckets 
 

4. Brake nozzle 
 

5. Outer casing 
 

6. Governing mechanism 
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5.5.1 VELOCITY TRIANGLES, WORKDONE, EFFICIENCY OF PELTON 

WHEEL INLET AND OUTLET VECTOR DIAGRAMS 

 

Let V = Velocity of the jet 

u = Velocity of the vane (cups) at the impact point u 

= DN/ 60 
 

where D = Diameter of the wheel corresponding to the impact point 

= Pitch circle diameter. 

At inlet the shape of the vane is such that the direction of motion of the jet and the 

vane is the same. 
i.e., Ȑ = 0, ș = 0 

Relative velocity at inlet Vr = V —u 
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Hydraulic efficiency 

This is the ratio of the work done per second per 

head at inlet to the turbine. 

 

Energy head at inlet = V2/2g 
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Condition for maximum hydraulic efficiency 

For a given jet velocity for efficiency to be maximum, word done should be 

maximum 

Work done per second per N of water 

Hence for the condition of maximum hydraulic efficiency, the peripheral speed of 

the turbine should reach one half the jet speed. 
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[ The speed of any water turbine is represented by N rpm. A turbine has speed, 

known as specific speed and is represented by N 

‘ Specific speed of a water turbine in the speed at which a geometrically similar 

turbine would run if producing unit power (1 kW) and working under a net head of 

1 m. Such a turbine would be an imaginary one and is called specific turbine. 
 

5.6 SPECIFIC SPEED 
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5.7 FRANCIS TURBINE 
 

Francis turbine is an inward flow reaction turbine. It is developed by the American engineer 

James B. Francis. In the earlier stages, Francis turbine had a purely radial floe runner. But the 

modern Francis turbine is a mixed flow reaction turbine in which the water enters the runner 

radially at its outer periphery and leaves axially at its centre. This arrangement provides larger 

discharge area with prescribed diameter of the runner. The main parts such as 

1. Penstock 
 

2. Scroll or Spiral Casing 
 

3. Speed ring or Stay ring 
 

4. Guide vanes or Wickets gates 
 

5. Runner and runner blades 
 

6. Draft tube 
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5.8 KAPLAN TURBINE 
 

A Kaplan turbine is an axial flow reaction turbine which was developed by Austrian 

engineer V. Kaplan. It is suitable for relatively low heads. Hence, it requires a large quantity of 

water to develop large power. The main parts of Kaplan turbine, they are 

1. Scroll casing 
 

2. Stay ring 
 

3. Guide vanes 
 

4. Runner 
 

5. Draft tube 
 

 

5.9 PERFORMANCE OF TURBINES 
 

Turbines are often required to work under varying conditions of head, speed, output and gate 

opening. In order to predict their behavior, it is essential to study the performance of the turbines 

under the varying conditions. The concept of unit quantities and specific quantities are required to 

❖ The behavior of a turbine is predicted working under different conditions. 

❖ Comparison is made between the performance of turbine of same type but of different 

sizes. 
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❖ The performance of turbine is compared with different types. 

 

 

5.10 DRAFT TUBE 

The pressure at the exit of the runner of a reaction turbine is generally less than atmospheric 

pressure. Thus the water at the exit of the runner cannot be directly discharged to the tail race. A 

pipe o gradually increasing area is used for discharging water form the exit of the turbine to the tail 

race. This pipe of gradually increasing area is called a draft tube. 

 

5.11 SPECIFIC SPEED 
 

Homologus units are required in governing dimensionless groups to use scaled models in 

designing turbomachines, based geometric similitude. 

Specific speed is the speed of a geometrically similar turbine, which will develop unit 

power when working under a unit head. The specific speed is used in comparing the different types 

of turbines as every type of turbine has different specific speed. In S.I. units, unit power is taken as 

one Kw and unit as one meter. 

5.12 GOVERNING OF TURBINES 
 

All the modern hydraulic turbines are directly coupled to the electric generators. The 

generators are always required to run at constant speed irrespective of the variations in the load. It 

is usually done by regulating the quantity of water flowing through the runner in accordance with 

the variations in the load. Such an operation of regulation of speed of turbine runner is known as 

governing of turbine and is usually done automatically by means of a governor. 

Applications 
 

1. To produce the power by water. 

 
GLOSSARY 

 
HP –Horse power 

KW- Kilo watts 

 
REVIEW QUESTIONS 

 

1. Define hydraulic machines. 

2. Give example for a low head, medium head and high head turbine. 

3. What is impulse turbine? Give example. 

4. What is reaction turbine? Give example. 

5. What is axial flow turbine? 

6. What is the function of spear and nozzle? 

9. Define gross head and net or effective head. 

7.Define hydraulic efficiency. 

8. Define unit speed of turbine. 
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9. Define specific speed of turbine. 

10. Give the range of specific speed values of Kaplan , Francis turbine 

and pelton wheels 

11. Define unit discharge. 

12.Define unit power. 

13.What is a draft tube? In which type of turbine it is mostly used? 

14.Write the function of draft tube in turbine outlet. 

 
PART B 

 

1. Obtain en expression for the work done per second by water on the runner of a pelton wheel. 

Hence derive an expression for maximum efficiency of the pelton wheel giving the relationship 

between the jet speed and bucket speed. 

 

2. (a) A pelton wheel is having a mean bucket diameter of 1 m and is running at 1000 rpm. The 

net head on the pelton wheel is 700 m. If the side clearance angle is 15º and discharge through 

nozzle is 0.1 m³/s, find (1) power available at nozzle and (2) hydraulic efficiency of the turbine. 

Take Cv=1 (b) A turbine is to operate under a head of 25 m 

at 200 rpm. The discharge is 9 m³/s. If the efficiency is 90% determine, Specific speed of the 

machine, Power generated and type of turbine. 

 

3. A pelton turbine is required to develop 9000 KW when working under a head of 300 m the 

impeller may rotate at 500 rpm. Assuming a jet ratio of 10 And an overall efficiency of 85% 

calculate (1) Quantity of water required. (2) Diameter of the wheel (3) Number of jets (4) 

Number and size of the bucket vanes on the runner. 

 

4. An Outward flow reaction turbine has internal and external diameters of the runner as 0.5 m and 

1.0 m respectively. The turbine is running at 250 rpm and rate of flow of water through the 

turbine is 8 m³/s. The width of the runner is constant at inlet and out let and is equal to 30 cm. 

The head on the turbine is 10 m and discharge at outlet6 is radial, determine (1) Vane angle at 

inlet and outlet. (2) Velocity of flow at inlet and outlet. 

 

5. The Nozzle of a pelton Wheel gives a jet of 9 cm diameter and velocity 75 m/s. Coefficient of 

velocity is 0.978. The pitch circle diameter is 1.5 m and the deflection angle of the bucket is 

170º. The wheel velocity is 0.46 times the jet velocity. Estimate the speed of the pelton wheel 

turbine in rpm, theoretical power developed and also the efficiency of the turbine. 

 

6. (a)A turbine is to operate a head of a 25 m at 200 rpm; the available discharge is 9 m³/s 

assuming an efficiency of 90%. Determine (1) Specific speed (2) Power generated (3) 

Performance under a head of 20 m (4) The type of turbine. ) (b) A vertical reaction 

turbine under 6m head at 400 rpm the area and diameter of runner at inlet are 0.7 m² and 1m 

respective the absolute and relative velocities of fluid entering are 15ºand 60º to the tangential 

direction. Calculate hydraulic efficiency. 

 

7. A Francis turbine has an inlet diameter of 2.0 m and an outlet diameter of 1.2m. The width of 

the blades is constant at 0.2 m. The runner rotates at a speed of 250 rpm with a discharge of 8 

m³/s .The vanes are radial at the inlet and the discharge is radially outwards at the outlet. 

Calculate the angle of guide vane at inlet and blade angle at the outlet. 
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QUESTION BANK 
 
 

 

 

 
1. Define fluids. 

UNIT- I 
FLUID PROPERTIES AND FLOW CHARACTERISTICS 

PART – A 

Fluid may be defined as a substance which is capable of flowing. It has  no definite shape 

of its own, but confirms to the shape of the containing vessel. 

 

2. What are the properties of ideal fluid? 

Ideal fluids have following properties 

i)It is incompressible 

ii) It has zero viscosity 

iii) Shear force is zero 

 
3. What are the properties of real fluid? 

Real fluids have following properties 

i)It is compressible 

ii) They are viscous in nature 

iii) Shear force exists always in such fluids. 

 
4. Explain the Density 

Density or mass density is defined as the ratio of the mass of the fluid to its volume. 

Thus mass per unit volume of a fluid is called density. It is denoted by the 

symbol (ρ). 

Density = Mass of the fluid (kg) 

Volume of the fluid (m3) 

 
5. Explain the Specific weight or weight density 

Specific weight or weight density of a fluid is the ratio between the weight of a fluid 

to its volume. Thus weight per uint volume of a fluid is called weight density and is 

denoted by the symbol (W). 

 

(W) = Weight of the fluid = Mass x Acceleration due to gravity 

Volume of fluid Volume of fluid 

 

W = pg 

 
6. Explain the Specific volume 

Specific volume of a fluid is defined as the volume of the fluid occupied by a unit 

Mass or volume per unit mass of a fluid is called specific volume. 

Specific volume = Volume   =   m3  = 1 

Mass kg p 

 
7. Explain the Specific gravity 

Specific gravity is defined as the ratio of weight density of a fluid to the weight 

density of a standard fluid. For liquid, standard fluid is water and for gases, it is 

air. 
Specific gravity =  Weight density of any liquid or gas 

Weight density of standard liquid or gas 
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8. Define Viscosity. 

It is defined as the property of a liquid due to which it offers resistance to the movement of 

one layer of liquid over another adjacent layer. 

 
9. Define kinematic viscosity. 

It is defined as the ratio of dynamic viscosity to mass density. (m²/sec) 

 
10. Define Relative or Specific viscosity. 

It is the ratio of dynamic viscosity of fluid to dynamic viscosity of water at 

20°C. 
11. State Newton's law of viscosity and give examples. 

Newton's law states that the shear stress ( ) on a fluid element layer is directly 

proportional to the rate of shear strain. The constant of proportionality is called co- 

efficient of viscosity. 

r = μ du 

dy 

 

12. Give the importance of viscosity on fluid motion and its effect on temperature. 

Viscosity is the property of a fluid which offers resistance to the movement of one 

layer of fluid over another adjacent layer of the fluid. The viscosity is an important 
property which offers the fluid motion. 

The viscosity of liquid decreases with increase in temperature and for gas it 

Increases with increase in temperature. 

 
13. Explain the Newtonian fluid 

The fluid which obeys the Newton's law of viscosity i.e., the shear stress is directly 

proportional to the rate of shear strain, is called Newtonian fluid. 

r = μ  du 

dy 

 

14. Explain the Non-Newtonian fluid 

The fluids which does not obey the Newton's law of viscosity i.e., the shear stress is 

not directly proportional to the ratio of shear strain, is called non-Newtonian fluid. 

 

15. Define compressibility. 

Compressibility is the reciprocal of bulk modulus of elasticity, k which is defined as 

the ratio of compressive stress to volume strain. 

k =  Increase of pressure 

Volume strain 

Compressibility 1 =  Volume of strain 

k Increase of pressure 

 

 

16. Define surface tension. 

Surface tension is defined as the tensile force acting on the surface of a liquid in 

Contact with a gas or on the surface between two immiscible liquids such that 

contact surface behaves like a membrane under tension. 

 

17. Define Capillarity. 
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Capillary is a phenomenon of rise or fall of liquid surface relative to the 

adjacent general level of liquid. 

 
18. What is cohesion and adhesion in fluids? 

Cohesion is due to the force of attraction between the molecules of the same liquid. 

Adhesion is due to the force of attraction between the molecules of two different 

Liquids or between the molecules of the liquid and molecules of the solid boundary 

surface. 

 
19. State momentum of momentum equation? 

It states that the resulting torque  acting  on a  rotating fluid  is equal to the rate 

of change of moment of momentum. 

 
20. What is momentum equation 

It is based on the law of conservation of momentum or on the momentum principle 

It states that,the net force acting on a fluid mass is equal to the change in 

momentum of flow per unit time in that direction. 

 
21. What is Euler's equation of motion 

This is the equation of motion in which forces due to gravity and pressure are taken into 

consideration.  This is derived by considering the motion of a fluid element  along a stream 

line. 

 
22. What is venturi meter? 

Venturi meter is a device for measuring the rate of fluid flow of a flowing fluid through a 

pipe. It consisits of three parts. 

a. A short converging part b. Throat c.Diverging part. 

It is based on the principle of Bernoalli's equation. 

 

23. What is an orifice meter? 

Orifice meter is the device used for measuring the rate of flow of a fluid through a pipe. it 

is a cheaper device as compared to venturi meter. it also works on the priniciple as that of venturi 

meter. It consists of a flat circular plate which has a circular sharp edged hole called orifice. 

 
24. What is a pitot tube? 

Pitot tube is a device for measuring the velocity of a flow at any point in a pipe or a channel. 

It is based on the principle that if the velocity of flow at a point becomes zero, the pressure there is 

increased due to the conversion of kinetic energy into pressure energy. 
. What are the types of fluid flow? 

Steady & unsteady fluid flow 
Uniform & Non-uniform flow 
One dimensional, two-dimensional & three-dimensional flows 
Rotational & Irrotational flow 

 

25. State the application of Bernouillie’s equation ? 

It has the application on the following measuring devices. 

1.Orifice meter. 

2.Venturimeter. 

3.Pitot tube. 
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1. Define viscosity (u). 

UNIT II 
FLOW THROUGH CIRCULAR CONDUITS 

PART – A 

Viscosity is defined as the property of a fluid which offers resistance to the 

movement of one layer of fluid over another adjacent layer of the fluid.Viscosity is 



 

 

also defined as the shear stress required to produce unit rate of shear strain. 

 
2. Define kinematic viscosity. 

Kniematic viscosity is defined as the ratio between the dynamic viscosity and 

density of fluid. It is denoted by μ. 

 
3. What is minor energy loss in pipes? 

The loss of head or energy due to friction in a pipe is known as major loss while loss of 

energy due to change of velocity of fluid in magnitude or direction is called minor loss of energy. 

These include, 
a. Loss of head due to sudden enlargement. 

b. Loss of head due to sudden contraction. 

c. Loss of head at entrance to a pipe. 

d. Loss of head at exit of a pipe. 

e. Loss of head due to an obstruction in a pipe. 

f. Loss of head due to bend in a pipe. 

g. Loss of head in various pipe fittings. 

 

4. What is total energy line? 

Total energy line is defined as the line which gives the sum of pressure head, datum head 

and kinetic head of a flowing fluid in a pipe with respect to some reference line. It is also defined 

as the line which is obtained by joining the tops of all vertical ordinates showing sum of the 

pressure head and kinetic head from the centre of the pipe. 

 
5. What is hydraulic gradient line? 

Hydraulic gradient line gives the sum of (p/w+z) with reference to datum line. Hence 

hydraulic gradient line is obtained by subtracting v2 / 2g from total energy line. 

 
6. What is meant by pipes in series? 

When pipes of different lengths and different diameters are connected end to end, pipes are 

called in series or compound pipe. The rate of flow through each pipe connected in series is same. 

 
7. What is meant by pipes in parallel? 

When the pipes are connected in parallel, the loss of head in each pipe is same. The rate of 

flow in main pipe is equal to the sum of rate of flow in each pipe, connected in parallel. 

 
8. What is boundary layer and boundary layer theory? 

When a solid body immersed in the flowing fluid, the variation of velocity from zero to free 

stream velocity in the direction normal to boundary takes place in a narrow region in the vicinity of 

solid boundary. This narrow region of fluid is called boundary layer. The theory dealing with 

boundary layer flow is called boundary layer theory. 

 
9. What is turbulent boundary layer? 

If the length of the plate is more then the distance x, the thickness of boundary layer will go 

on increasing in the downstream direction. Then laminar boundary becomes unstable and motion 

of fluid within it, is disturbed and irregular which leads to a transition from laminar to turbulent 

boundary layer. 

 

10. What is boundary layer thickness? 

Boundary layer thickness (S) is defined as the distance from boundary of the solid body 

measured in y-direction to the point where the velocity of fluid is approximately equal to 0.99 times 



 

 

the free steam (v) velocity of fluid. 

 
11. Define displacement thickness 

Displacement thickness (S*) is defined as the distances, measured perpendicular to the 

boundary of the solid body, by which the boundary should be displaced to compensate for the 

reduction inflow rate on account of boundary layer formation. 

 
12. What is momentum thickness? 

Momentum thickness (0) is defined as the distance, measured perpendicular to the boundary 

of the solid body, by which the boundary should be displaced to compensate for the reduction in 

momentum of flowing fluid on account of boundary layer formation. 

 

13. Mention the general characteristics of laminar flow. 

• There is a shear stress between fluid layers 

• ‘No slip’ at the boundary 

• The flow is rotational 

• There is a continuous dissipation of energy due to viscous shear 

14. What is Hagen poiseuille’s formula ? 

P1-P2 / pg = h f = 32 µUL / _gD2 

The expression is known as Hagen poiseuille formula . 

Where P1-P2 / _g = Loss of pressure head U = Average velocity 

µ = Coefficient of viscosity D = Diameter of pipe 

L = Length of pipe 

 
15. What are the factors influencing the frictional loss in pipe flow ? 

Frictional resistance for the turbulent flow is 

i. Proportional to vn where v varies from 1.5 to 2.0 . ii. 

Proportional to the density of fluid . 

iii. Proportional to the area of surface in contact . iv. 

Independent of pressure . 
v. Depend on the nature of the surface in contact . 

 
 
 

16. What is the expression for head loss due to friction in Darcy formula ? 

hf = 4fLV2 / 2gD 

Where f = Coefficient of friction in pipe L = Length of the pipe 

D = Diameter of pipe V = velocity of the fluid 

 
17. What do you understand by the terms 

a) major energy losses , b) minor energy losses 

Major energy losses : - 

This loss due to friction and it is calculated by Darcy weis bach formula and 

chezy’s formula . 

Minor energy losses :- This is 

due to 

i. Sudden expansion in pipe .ii. Sudden contraction in pipe . 

iii. Bend in pipe .iv. Due to obstruction in pipe . 



 

 

18. Give an expression for loss of head due to sudden enlargement of the pipe : 

he = (V1-V2)
2 

/2g 

Wherehe = Loss of head due to sudden enlargement of pipe . 
V1 = Velocity of flow at section 1-1 

V2 = Velocity of flow at section 2-2 

 

19. Give an expression for loss of head due to sudden contraction : 

hc =0.5 V2/2g 

Where hc = Loss of head due to sudden contraction . 
V = Velocity at outlet of pipe. 

 
20. Give an expression for loss of head at the entrance of the pipe 

hi =0.5V2/2g 

where hi = Loss of head at entrance of pipe . 

V = Velocity of liquid at inlet and outlet of the pipe . 

 
21. What is sypon ? Where it is used: _ 

Sypon is along bend pipe which is used to transfer liquid from a reservoir at a higher 

elevation to another reservoir at a lower level . 

Uses of sypon : - 

1. To carry water from one reservoir to another reservoir separated by a hill ridge . 

2. To empty a channel not provided with any outlet sluice . 
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UNIT III 
DIMENSIONAL ANALYSIS 

PART – A 

1. What are the methods of dimensional analysis 



 

 

There are two methods of dimensional analysis. They are, 

a. Rayleigh - Retz method 

b. Buckingham's theotem method. 

Nowadays Buckingham's theorem method is only used. 

 
2. Describe the Rayleigh's method for dimensional analysis. 

Rayleigh's method is used for determining the expression for a variable which depends upon 

maximum three or four variables only. If the number of independent variables becomes more than 

four, then it is very difficult to find the expression for dependent variable. 

 
3. What do you mean by dimensionless number 

Dimensionless numbers are those numbers which are obtained by dividing the inertia force 

by viscous force or gravity force or pressure force or surface tension or elastic force. As this is a 

ratio of one force to other force, it will be a dimensionless number. 

 
4. Name the different forces present in fluid flow 

Inertia force 

Viscous force 

Surface tension force 

Gravity force 

5. State Buckingham’s Π theorem 

It states that if there are ‘n’ variables in a dimensionally homogeneous equation and if 

these variables contain ‘m’ fundamental dimensions (M,L,T), then they are grouped into 

(n-m), dimensionless independent Π-terms. 

 
6. State the limitations of dimensional analysis. 

1. Dimensional analysis does not give any due regarding the selection of variables. 

2.The complete information is not provided by dimensional analysis. 

3.The values of coefficient and the nature of function can be obtained only by 

experiments or from mathematical analysis. 

 
7. Define Similitude 

Similitude   is defined   as the complete  similarity between the model and 

prototype. 

 
8. State Froude’s model law 

Only Gravitational force is more predominant force. The law states ‘The Froude’s 

number is same for both model and prototype’ 

 
 

9. What are the similarities between model and prototype? 

(i) Geometric Similarity 

(ii) Kinematicc Similarity 

(iii) Dynamic Similarity 

 
10. Define Weber number. 

It is the ratio of the square root of the inertia force to the surface tension force. 
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1. What is meant by Pump? 

UNIT-IV 
PUMPS 

PART – A (2 Marks) 

A pump is device which converts mechanical energy into hydraulic energy. 

 

2. Define a centrifugal pump 

If the mechanical energy is converted into pressure energy by means of centrifugal force 

cutting on the fluid, the hydraulic machine is called centrifugal pump. 

 
3. Define suction head (hs). 

Suction head is the vertical height of the centre lines of the centrifugal pump above the 

water surface in the tank or pump from which water is to be lifted. This height is also called 

suction lift and is denoted by hs. 

 

4. Define delivery head (hd). 

The vertical distance between the center line of the pump and the water surface in the tank 

to which water is delivered is known as delivery head. This is denoted by hd. 

 
5. Define static head (Hs). 

The sum of suction head and delivery head is known as static head. This is represented by 

'Hs' and is written as, 



 

 

Hs = hs+ hd 

 
6. Mention main components of Centrifugal pump. 

i) Impeller ii) Casing 

iii) Suction pipe,strainer & Foot valve iv) Delivery pipe & Delivery valve 

 
7. What is meant by Priming? 

The delivery valve is closed and the suction pipe, casing and portion of the delivery 

pipe upto delivery valve are completely filled with the liquid so that no air pocket is 

left. This is called as priming. 

 
8. Define Manometric head. 

It is the head against which a centrifugal pump work. 

 

9. Describe multistage pump with 

a. impellers in parallel b. impellers in series. In multi stage centrifugal pump, 

a. when the impellers are connected in series ( or on the same shaft) high head can be 

developed. 

b. When the impellers are in parallel (or pumps) large quantity of liquid can be discharged. 

 

10.. Define specific speed of a centrifugal pump (Ns). 

The specific speed of a centrifugal pump is defined as the speed of a geometrically circular 

pump which would deliver one cubic meter of liquid per second against a head of one meter. It is 

denoted by 'Ns'. 

 
11. What do you understand by characteristic curves of the pump? 

Characteristic curves of centrifugal pumps are defined those curves which are plotted from 

the results of a number of tests on the centrifugal pump. 

 
12. Why are centrifugal pumps used sometimes in series and sometimes in parallel? 

The centrifugal pumps used sometimes in series because for high heads and in 

parallel for high discharge 

 
13. Define Mechanical efficiency. 

I 

t is defined as the ratio of the power actually delivered by the impeller to the power 

supplied to the shaft. 

 
14. Define overall efficiency. 

It is the ratio of power output of the pump to the power input to the pump. 

 
15. Define speed ratio, flow ratio. 

Speed ratio: It is the ratio of peripheral speed at outlet to the theoretical velocity of jet 

corresponding to manometric head. 

Flow ratio: It is the ratio of the velocity of flow at exit to the theoretical 

velocity of jet corresponding to manometric head. 

 
16.. Mention main components of Reciprocating pump. 

# Piton or Plunger 

# Suction and delivery pipe 

# Crank and Connecting rod 



 

 

 

17.. Define Slip of reciprocating pump. When the negative slip does occur? 

The difference between the theoretical discharge and actual discharge is called slip of 

the pump. 

But in sometimes actual discharge may be higher then theoretical discharge, in such a 

case coefficient of discharge is greater then unity and the slip will be negative called  

as negative slip. 

 
18. What is indicator diagram? 

Indicator diagram is nothing but a graph plotted between the pressure head in the 

cylinder and the distance traveled by the piston from inner dead center for one 

complete revolution of the crank 

19. What is meant by Cavitations? 

It is defined phenomenon of formation of vapor bubbles of a flowing liquid in a region 

where the pressure of the liquid falls below its vapor pressure and the  sudden 

collapsing of theses vapor bubbles in a region of high pressure. 

 
20. What are rotary pumps? 

Rotary pumps resemble like a centrifugal pumps in appearance. But the working 

method differs. Uniform discharge and positive displacement can be obtained by using 

these rotary pumps, It has the combined advantages of both centrifugal and 

reciprocating pumps. 
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UNIT-V 
TURBINES 

PART – A 

 

1. Define hydraulic machines. 

Hydraulic machines which convert the energy of flowing water into mechanical energy. 

 
2. Give example for a low head, medium head and high head turbine. 

Low head turbine – Kaplan turbine 

Medium head turbine – Modern Francis turbine 

High head turbine – Pelton wheel 

3. What is impulse turbine? Give example. 

In impulse turbine all the energy converted into kinetic energy. From these the turbine 

will develop high kinetic energy power. This turbine is called impulse turbine. Example: 

Pelton turbine 

 
4. What is reaction turbine? Give example. 

In a reaction turbine, the runner utilizes both potential and kinetic energies. Here 

portion of potential energy is converted into kinetic energy before entering into the turbine. 

Example: Francis and Kaplan turbine. 

 
5. What is axial flow turbine? 

In axial flow turbine water flows parallel to the axis of the turbine shaft. Example: 

Kaplan turbine 

 
6. What is mixed flow turbine? 

In mixed flow water enters the blades radially and comes out axially, parallel to the turbine 

shaft. Example: Modern Francis turbine. 

 
7. What is the function of spear and nozzle? 

The nozzle is used to convert whole hydraulic energy into kinetic energy. Thus the nozzle 

delivers high speed jet. To regulate the water flow through the nozzle and to obtain a good jet 

of water spear or nozzle is arranged. 

 

8. Define gross head and net or effective head. 

Gross Head: The gross head is the difference between the water level at the reservoir 

and the level at the tailstock. 

Effective Head: The head available at the inlet of the turbine. 



 

 

9. Define hydraulic efficiency. 

It is defined as the ratio of power developed by the runner to the power supplied by the water 

jet. 

 
10. Define mechanical efficiency. 

It is defined as the ratio of power available at the turbine shaft to the power developed 

by the turbine runner. 

 
11. Define volumetric efficiency. 

It is defied as the volume of water actually striking the buckets to the total water supplied 

by the jet. 

 

12. Define over all efficiency. 

It is defined as the ratio of power available at the turbine shaft to the power available 

from the water jet. 

 
13. Define the terms 

(a) Hydraulic machines (b) Turbines (c) Pumps. 

a. Hydraulic machines: 

Hydraulic machines are defined as those machines which convert either hydraulic energy 

into mechanical energy or mechanical energy into hydraulic energy. 

b. Turbines; 

The hydraulic machines which convert hydraulic energy into mechanical energy are called 

turbines. 

c. Pumps: 

The hydraulic Machines which convert mechanical energy into hydraulic energy are called 

pumps. 

 
14. What do you mean by gross head? 

The difference between the head race level and tail race level when no water is flowing is 

known as gross head. It is denoted by Hg. 

 
15. What do you mean by net head? 

Net head is also known as effective head and is defined as the head available at the inlet of 

te turbine. It is denoted as H 

 
16. What is draft tube? why it is used in reaction turbine? 

The pressure at exit of runner of a reaction turbine is generally less than the atmospheric 

pressure. The water at exit cannot be directly discharged to tail race. A tube or pipe of gradually 

increasing area is used for discharging water from exit of turbine to tail race. This tube of 

increasing area is called draft tube. 

 
17. What is the significance of specific speed? 

Specific speed plays an important role for selecting the type of turbine. Also the 

performance of turbine can be predicted by knowing the specific speed of turbine. 

 
18.. What are unit quantities? 

Unit quantities are the quantities which are obtained when the head on the turbine is unity. 

They are unit speed, unit power unit discharge. 

 

19. Why unit quantities are important 



 

 

If a turbine is working under different heads, the behavior of turbine can be easily known 

from the values of unit quantities. 

 
20. What do you understand by characteristic curves of turbine? 

Characteristic curves of a hydraulic turbine are the curves, with the help of which the exact 

behavior and performance of turbine under different working conditions can be known. 

 
 

21. Define the term 'governing of turbine'. 

Governing of turbine is defined as the operation by which the speed of the turbine is kept 

constant under all conditions of working. It is done by oil pressure governor. 

 
22. What are the types of draft tubes? 

The following are the important types of draft tubes which are commonly used. 

a. Conical draft tubes 

b. Simple elbow tubes 

c. Moody spreading tubes and 

d. Elbow draft tubes with circular inlet and rectangular outlet. 
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